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Abstract—Deep Convolutional Neural Networks (DCNNs) are
one of the most promising types of deep learning technique and
have been recognized as the dominant approach for almost all
recognition and detection tasks. The computation of DCNNs
is highly computational and memory intensive for the large
feature maps and neuron connections, and the performance
highly depends on the capability of hardware resources. With
the recent trend of wearable devices and Internet of Things
(IoTs), it becomes attractive to integrate the DCNNs onto
embedded and portable devices, which require low power &
energy consumptions and small hardware footprints.

Recent work SC-DCNN [1] demonstrates that Stochastic
Computing (SC), as a low-cost substitute to binary-based com-
puting, can radically simplify the hardware implementation of
arithmetic units and has the potential to satisfy the stringent
power requirements in embedded devices. In SC, many arithmetic
operations that are resource-consuming in binary designs can be
implemented with very simple hardware logic, alleviating the
extensive computational complexity. It offers a colossal design
space for integration and optimization due to its reduced area
and soft error resiliency.

In this paper, we present HEIF, a highly efficient SC-based
inference framework of the large-scale DCNNs, with broad
applications including (but not limited to) LeNet-5 and AlexNet,
that achieves high energy efficiency and low area/hardware cost.
Compared to SC-DCNN [1], HEIF features with 1) the first
(to the best of our knowledge) SC-based Rectified Linear Unit
(ReLU) activation function to catch up with the recent advances
in software models and mitigate degradation in application-level
accuracy; 2) the redesigned Approximate Parallel Counter (APC)
and optimized stochastic multiplication using transmission gates
and inverse mirror adders; and 3) the new optimization of weight
storage using clustering. Most importantly, to achieve maximum
energy efficiency while maintaining acceptable accuracy, HEIF
considers holistic optimizations on cascade connection of function
blocks in DCNN, pipelining technique, and bit-stream length
reduction. Experimental results show that in large-scale applica-
tions HEIF outperforms previous SC-DCNN by the throughput
of 4.1×, by area efficiency of up to 6.5× and achieves up to 5.6×
energy improvement.

Keywords—Stochastic Computing, Deep learning, Convolu-
tional Neural Network, Energy-efficient, ASIC, Optimization.

I. INTRODUCTION

Machine learning technology benefits many aspects of
modern life: web searches, e-commerce recommendations,
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social network content filtering, etc. [2]. Unfortunately, the
conventional machine learning techniques were restricted by
the lack of ability to automatically extract high-level features
which have been conducted by well-engineered manual feature
extractors. Deep learning methods have taken advantage of
the architecture of multi-level representations to learn very
complex functions [2]. Here, each representation is obtained
through the transformation from a slightly less abstract level
by a simple non-linear module. Deep learning significantly
enhances the machine learning capability by learning from
data by these multiple layers for different features without
human involvement.

Deep Convolutional Neural Networks (DCNNs) is one of
the most promising types of artificial neural networks based
on deep learning and have been recognized as the domi-
nant approach for almost all recognition and detection tasks.
DCNNs feature the special structural designs [3] of layer-
wise local connections implementing convolution, integrating
pattern matching techniques into neural networks and learning
invariant elementary features of images. It has been demon-
strated that DCNNs are effective models for understanding
image content [4], image classification [5], video classification
[4] and object detection [6,7].

Due to the deep structure, the performance of DCNN
highly relies on the capability of hardware resources. From
high performance server clusters [8,9] to General-Purpose
Graphics Processing Units (GPGPUs) [10,11], parallel ac-
celerations of DCNNs are widely used in both the academic
and industry. Recently, hardware acceleration for DCNNs has
attracted enormous research interests on Field-Programmable
Gate Arrays (FPGAs) [12–14]. Nevertheless, there is a trend of
embedding DCNNs into light-weight embedded and portable
systems, such as surveillance monitoring systems [15], self-
driving systems [16], unmanned aerial systems [17], and
robotic systems [18]. These scenarios require very low power
& energy consumptions and small hardware footprints. Be-
sides, cell phones [2] and wearable devices [19] equipped with
hardware-level neural network computation capability require
the radical reduction in power & energy consumptions and
footprints.

DCNNs are both compute and memory intensive. Based on
the conventional binary arithmetic calculations (used in prior
GPU, FPGA and ASIC accelerators), deploying the entire large
DCNNs like AlexNet [20–22] (for ImageNet applications)
incurs the significant amount of hardware, power and energy
cost. This makes it impractical to use DCNNs in embedded
systems with a limited area and power budget. Therefore, the
novel alternative computing paradigms are urgently needed to
overcome this hurdle.

The recent work [1] considered Stochastic Computing (SC),
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a special approximate computing technique such as [23–28],
as a low-cost substitute to binary-based computing [29] for
DCNNs. SC can radically simplify the hardware implemen-
tation of arithmetic units and has the potential to satisfy the
low-power requirements of DCNNs. In SC, many arithmetic
operations that are resource-consuming in binary designs can
be implemented with very simple hardware logic [30], allevi-
ating the extensive computation complexity. It offers a colossal
design space for optimization due to its reduced area and soft
error resiliency. Recent works [31–33] applied SC to neural
networks and Deep Belief Networks (DBNs), demonstrating
the applicability of SC on deep learning techniques.

Unlike DBNs, implementing DCNNs using SC is more
challenging due to local connectivities, down-sampling op-
erations and special activation functions, i.e., the Rectified
Linear Unit (ReLU) function [3,4]. SC-DCNN [1] is the first
to investigate SC-based DCNN design space explorations. It
does have the following limitations. First, SC-DCNN suffers
from the degraded overall accuracy because it utilizes the
easy-to-implement hyperbolic tangent (tanh) function instead
of ReLU function. Second, SC-DCNN is not sufficiently
optimized, which leads to 1) the difficulty to maintain the
high application-level accuracy due to the stochastic nature
of SC components; and most importantly, 2) a low clock
frequency of no more than 200MHz. To overcome these
limitations and further improve energy efficiency, we present
HEIF (i.e. Highly Efficient Inference Framework) with broad
applications including (but not limited to) LeNet5 and AlexNet,
that achieves high energy efficiency and low area/hardware
cost. HEIF includes the following key innovations:

1) We propose the first (to the best of our knowledge) SC-
based ReLU activation function and corresponding optimiza-
tions to catch up with recent software advances and mitigate
degradation on application-level accuracy.

2) We re-design the Approximate Parallel Counter (APC)
proposed in [34] and optimize stochastic multiplication, which
is utilized in the inner product calculations of DCNN, to
achieve a smaller footprint and higher energy efficiency with-
out sacrificing any precision.

3) We investigate a memory reduction and clustering method
considering the effects of hardware imprecision on the overall
application-level accuracy.

4) HEIF is holistically optimized with the cascade struc-
tural connection of function blocks, the pipelining technique,
and the bit-stream length reduction. It significantly improves
the energy efficiency without compromising application-level
accuracy requirements.

Overall, HEIF could achieve very high energy efficiency of
1.2M Images/J and 1.3M Images/J, and high throughput of
3.2M Images/s and 2.5M Images/s, along with very small
area of 22.9 mm2 and 24.7 mm2 on LeNet-5 and AlexNet,
respectively. HEIF outperforms SC-DCNN [1] by throughput
of 4.1×, by area efficiency of up to 6.5× and achieves up to
5.6× energy improvement.

II. PRELIMINARY WORK

A. DCNN Architecture Overview
Deep Convolutional Neural Networks (DCNN) are biolog-

ically inspired variants of multi-layer perceptrons (MLPs) by
mimicking the animal visual mechanism [35]. Thus, a DCNN
has special sets of neurons only connected to a small receptive
field of its previous layer rather than fully connected. Besides
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Fig. 1. General DCNN architecture.

an input layer and an output layer, a general DCNN architec-
ture consists of a stack of convolutional layers, pooling layers,
and fully connected layers shown in Figure 1. Please note that
some special layers like normalization or regularization are
not the focus in this paper.

1) A convolutional layer is associated with a set of learnable
filters (or kernels) [3], which are activated when specific types
of features are found at some spatial positions in the inputs.
Filter-sized moving windows are applied to the inputs to obtain
a set of feature maps by calculating the convolution of the
filter and inputs in the moving window. Each convolutional
neuron, representing one pixel in a feature map, takes a set
of inputs and corresponding filter weights to calculate their
inner-products.

2) After extracting features using convolution, a subsam-
pling step can be applied to aggregate statistics of these
features to reduce the dimensions of data and mitigate over-
fitting issues. This subsampling operation is realized by a
pooling neuron in pooling layers, where different non-linear
functions can be applied, such as max pooling, average pool-
ing, and L2-norm pooling. Among them, max pooling is the
dominating type of pooling in state-of-the-art DCNNs due to
the higher overall accuracy and convergence speed. The activa-
tion functions are non-linear transformation functions, such as
Rectified Linear Units (ReLU) f(x) = max(0, x), hyperbolic
tangent (tanh) f(x) = tanh(x) or f(x) = |tanh(x)|, and
sigmoid function f(x) = 1

1+e−x . Among them, the ReLU
function is the dominating type in the (large-scale) DCNNs
due to i) the lower complexity for software implementation;
and ii) the reduced vanishing gradient problem [36]. These
non-linear transformations are conducted somewhere before
the inputs of the next layer, ensuring that they are within
the range of [−1, 1]. Usually, a combination of convolutional
neurons, pooling neurons and activation functions forms a
feature extraction block (FEB) to extract high-level abstraction
from the input images or previous low-level features.

3) A fully connected layer is a normal neural network
layer with its inputs fully connected with its previous layer.
Each fully connected neuron calculates the inner-product of its
inputs and corresponding weights.

In general, a DCNN inference process has three basic func-
tion blocks shown in Figure 2. 1) The inner-product (Figure 2
(a)) of inputs and weights corresponding to their incoming
connections with the previous layer is calculated by neurons in
convolutional layers and fully connected layers; 2) The pooling
block (Figure 2 (b)) sub-samples the inner-products; 3) The
activation function block (Figure 2 (c)) transforms the inner-
products or sub-sampled outputs to ensure that the inputs of
next layer are within the valid range.

The overall application-level accuracy (e.g., the overall
classification rates) is one of the key optimization goals of the
SC-based DCNN. On the other hand, the SC-based function
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Fig. 2. Function blocks in a DCNN. (a) Inner-product, (b) pooling, and
(c) activation.

blocks and FEBs exhibit a certain degree of imprecision due to
the inherent stochastic nature. The application-level accuracy
and hardware precision are different but correlated, which
implies the high precision in each function block will likely
lead to a high overall application-level accuracy. Therefore,
the hardware precisions will be optimized for the SC-based
function blocks and FEBs.

B. Stochastic Computing
In SC, a probabilistic number x in the range of [0,1] is

represented by a sequence of binary digits X (i.e, a bit-stream),
where the value of x is contained in the primary statistic
of the bit-stream or the probability of any given bit in the
sequence being a logic one [31]. For instance, the value of
a 5-bit sequence X = 10110 is x = PX=1 = 3

5 = 0.6. In
addition to this unipolar encoding format, SC has the bipolar
encoding format to represent a number x in the range of [-1, 1],
where x = 2 ·PX=1−1. For example, a sequence X = 11101
represents x = 0.6 in the bipolar format. We adopt the bipolar
encoding format since the numbers in a typical DCNN are
distributed on both sides of zero.

SC has three characteristics. First, only a subset of the
real numbers can be represented exactly in SC, i.e., an m-
bit sequence can only represent { 0

m ,
1
m , ...,

m
m} in the unipolar

format. Therefore, increasing the length of the bit-stream can
improve the precision. Since the bits in the bit-stream are
independent of each other, the precision can be adjusted with-
out hardware modification, which is known as the progressive
precision characteristic [29]. Second, the representation of a
stochastic number is not unique, e.g., there are C3

5 = 10
possible ways to represent 0.6 using a 5-bit SC sequence.
Third, as the weight of each bit in the bit-stream is even,
SC is naturally resilient to soft errors.

The basic arithmetic operations in DCNNs are multiplica-
tion, addition, and nonlinear activation, which can be imple-
mented efficiently using SC with small circuits and signifi-
cantly improved energy & power efficiency.

Multiplication. Stochastic multiplication can be performed
efficiently by an AND gate and an XNOR gate in unipolar
and bipolar format, respectively. Figure 3 (a) and (b) give the
example for unipolar and bipolar multiplication. We assume
that the inputs are independent of each other. For unipolar
multiplication x = PX=1 = PA1=1 ·PA2=1 = a1 ·a2, whereas
for bipolar multiplication x = 2PX=1−1 = 2(PA1=1·PA2=1+
PA1=0 · PA2=0)− 1 = 2[PA1=1 · PA2=1 + (1− PA1=1) · (1−
PA2=1)]−1 = (2PA1=1−1) · (2PA2=1−1) = a1 ·a2. Clearly,
multiplication in SC consumes much less hardware and offers
significantly improved energy & power efficiency, compared
with conventional binary arithmetic.

(a)
1,1,0,1,1,1,1,0 (6/8)

(b)

1,1,1,1,0,0,0,0 (4/8)A
B
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Z 1,1,0,1,0,0,0,0 (3/8)

Z 1,0,0,1,0,0,1,1 (0/8)

Fig. 3. Stochastic multiplication. (a) Unipolar and (b) bipolar.
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Addition. In the SC domain, addition can be implemented
by an OR gate, a multiplexer (MUX), and an Approximate
Parallel Counter (APC) [34], as shown in Figure 4 (a), (b),
(c), respectively. OR gate based addition is an approximation
of unipolar addition, i.e., x = PX ≈ PA1

+ PA2
+ · · ·PAn

≈
a1+a2+· · ·+an, which is not suitable for the bipolar encoding
format in this work. MUX-based adder works for both unipolar
and bipolar formats, where a MUX is used to randomly select
one input i among n inputs with probability pi such that
Σn

i=1pi = 1. For example, adding two numbers using MUX is
x = 2·PX−1 = 1

2 ·
((

2·PA1
−1

)
+
(
2·PA2

−1
))

= 1
2 ·(a1+a2)

in bipolar format. Since only one bit is utilized at a time,
MUX-based adder has low precision when input number n is
large, making it less attractive for the large DCNNs.

As shown in Figure 4 (c), [34] proposed the APC design
with high precision and no bias, which calculates the summa-
tion of multiple input bit streams (A1−An) by accumulating
the number of 1’s at each time step. Unlike the MUX-based
adder, which incurs significant accuracy loss since the 1-bit
wide output can only represent a number in the range of
[-1,1], the output of the APC is a log2(n)-bit wide binary
bit-stream, which is capable of representing numbers in a
wide range. As state-of-the-art DCNNs include the large filters
and huge connections with the fully-connected layers (i.e., a
large number of input bit streams for an adder), it becomes
imperative to use APC-based addition in practice instead of
MUX or OR gates. The APC should be further optimized
to achieve a smaller footprint and higher energy efficiency
without sacrificing precision.

Activation. Nonlinear activation function not only affects
the learning dynamics but also has a significant impact on
the network’s expressive power [37]. Traditional activation
functions, such as sigmoid (f(x) = 1

1+e−x ) and hyperbolic
tangent (f(x) = 2

1+e−2·x − 1), suffer from the vanishing
gradient problem, resulting in a slower training process or a
convergence to a poor local minimum [38]. On the other hand,
ReLU function (f(x) = max(0, x)) has two major benefits:
i) the reduced likelihood of the gradient to vanish, since an
activated unit gives a constant gradient of 1, and ii) the induced
high sparsity in the hidden layers as x ≤ 0 leads to f(x) = 0.

Nevertheless, to the best of our knowledge, only two types
of hyperbolic tangent activation function have been designed
in the SC domain for neural networks [31,32]. As shown in
Figure 5 (a), Stanh(·) is designed in [31] for input bit-stream X
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using a finite state machine (FSM) with K states. The output
stream Z is determined by the current state si (0 ≤ i ≤ K−1),
which is calculated as

si =

{
0, if 0 ≤ i ≤ K

2
− 1

1, otherwise
(1)

The detailed mathematical explanation of Stanh(·) is given
in [39]. On the other hand, Btanh(·) is proposed in [32] for
n-input binary bit-streams with m-bit length using a two-state
up/down counter, as shown in Figure 5 (b).

As ReLU has become the most popular activation function
for most recent DCNNs like AlexNet [2], it is imperative to
design novel SC-based ReLU activation for the state-of-the-
art DCNNs. We need to resolve two challenges in developing
effective SC-based ReLU: i) realize the nonlinear shape of
ReLU using SC, and ii) achieve sufficient precision level.
The latter is particularly important because an inaccurate
activation can potentially amplify the imprecision of features
after pooling.

III. PROPOSED DESIGN

A. Motivation
The hundreds of millions of connections and millions of

neurons in the state-of-the-art DCNNs make DCNNs both
highly computational and memory intensive. In order to deploy
DCNNs onto mobile systems, wearable devices, and un-
manned systems, further energy efficiency enhancements must
be achieved to implement the large state-of-the-art DCNN
such as AlexNet [5], which is composed of over 0.65 million
neurons with varying shapes across eight layers.

In the traditional binary arithmetic calculation blocks used
in most of the prior GPU, FPGA, and ASIC accelerator
works, the most intensive calculations in DCNNs are related
to the inner-product operation in both convolution and fully
connected layers. The inner-product consists of multiplications
and additions. The large number of binary multipliers and
adders makes it nearly impossible to deploy the entire large
DCNN such as AlexNet on embedded systems with a limited
hardware resources and power budgets, not to mention more
advanced DCNNs, such as VGG [40] and ZFNet [41] with
even more neurons.

The SC technique, on the other hand, can potentially over-
come this limitation and achieve a drastically smaller hardware
footprint and higher energy efficiency. SC-DCNN [1] performs
design space explorations on SC-based DCNNs for LeNet-5.
However, it lacks the design and optimization at both function
block level (e.g., ReLU or APC-based inner product block)
and overall DCNN level, and result in a notable degradation
in application-level accuracy because of the usage of tanh
activation function. In order to overcome these limitations, the
ReLU function block needs to be designed in SC domain and

avoid the degradation in application-level accuracy. Even for
the inner-product block which has already been investigated
in SC-DCNN, it needs further optimizations to satisfy the
requirements of energy efficiency, performance and accuracy.
Moreover, an overall design optimization is necessary in order
to optimize the overall energy efficiency while satisfying the
application-level accuracy of DCNN.

In the following subsections, we introduce the ReLU func-
tion block design and the inner-product function block design
in order to address the aforementioned drawbacks of SC-
DCNN. And we also propose the optimization on the overall
DCNN architecture including weight storage optimization, co-
optimization on the feature extraction blocks, and pipelining-
based optimization.

B. ReLU Function Block Design
ReLU has become the most popular activation function

in state-of-the-art DCNNs, however, only hyperbolic tan-
gent/sigmoid functions have been implemented in the SC
domain in previous works [31,42]. Therefore, it is important
to have the design of SC-based ReLU block in order to
accommodate the SC technique in the state-of-the-art large-
scale DCNNs, such as AlexNet for ImageNet applications.

The mathematical expression of ReLU is f(x) =
max(0, x), i.e., when input x is less than 0, the activation
result is 0, otherwise the activation result is x itself. This
characteristic of ReLU gives rise to a challenge for SC-
based designs. Since x is represented by a stochastic bit-
stream in SC with length m, we can only intuitively determine
its sign and value through a counter using m clock cycles.
This straightforward implementation of ReLU function in SC
domain undoubtedly leads to a significant extra delay and
energy overhead. On the other hand, the bit-stream-based
representation in SC restricts the number it represents within
the range [-1, 1], and as a result, the output of SC-based ReLU
block should be clipped to 1. The clipped ReLU in the SC
domain is expressed as f(x) = min(max(0, x), 1).

Four concerns should be addressed to develop an effec-
tive SC-based ReLU block for DCNN applications: i) the
application-level accuracy of the overall DCNN should be
high enough if the ReLU activation result is clipped to 1;
ii) determining whether the input x is a negative number
without causing extra latency; iii) generating of SC bit-stream
representing zero when the input x is less than zero; and iv)
output x itself when x ∈ [0, 1]. In this section, the design of
SC-based ReLU block is presented to resolve these concerns.

The premise that the SC-based ReLU block can be adopted
in DCNNs is that the clipped ReLU would not bring about sig-
nificant application-level accuracy degradation. Accordingly,
we perform a series of experiments on representative DCNNs
LeNet-5 and AlexNet by replacing their activation functions
with the clipped ReLU. According to the experiment results,
for AlexNet with ImageNet dataset [43], the clipped ReLU
causes no significant accuracy degradation for the overall
DCNN whereas for LeNet-5 with MNIST dataset [44], clipped
ReLU even improve the accuracy by more than 0.1%. There-
fore, the clipped ReLU is appropriate for the state-of-the-art
DCNNs. This addresses the first concern.

To avoid extra latency, the sign of the number repre-
sented by the bit-stream should be estimated dynamically
and synchronously. The SC-based ReLU proposed in this
work implements the dynamic estimation by accumulating
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the bit-stream and comparing the accumulated value with a
reference number. Since in a stochastic bit-stream, the 1’s
are randomly distributed, the number represented by a bit-
segment is approximately equal to the number represented by
the whole bit-stream. For instance, when 0.5 is represented
by a 1024-bit bit-stream, we consider both the first-half (512-
bit) and the second-half bit-streams are approximately equal to
0.5. Consequently, by accumulating the bit-stream, the number
represented by the accumulated number will asymptotically
converge to the actual number represented by the whole bit-
stream. On the other side, under the context of bipolar repre-
sentation, the number zero is presented by a bit-stream with
50% of 1’s, as (0 + 1)/2 = 0.5. Therefore, if the accumulated
number is less than half of the clock cycles for accumulation,
the number represented by the bit-stream is (likely to be)
less than 0. The SC-based ReLU block outputs a bit of 1
to enforce the output to equal zero by increasing the number
of 1’s. The second and the third concerns are addressed by
this accumulating and dynamic comparison strategy.

Similarly, if the accumulated number is greater than half
of the clock cycles for accumulation, the number represented
by the bit-stream is (likely to be) greater than 0. The current
output of the SC-based ReLU is determined by the output of
the finite state machine, which is homogeneous with Btanh.
The last concern is addressed as well.

Figure 6 illustrates the proposed architecture of SC-based
ReLU. The input of SC-based ReLU is accumulated, and the
accumulation result is compared with a reference number (half
of the passed clock cycles). The comparator output is used
as an input and also the control signal of the multiplexer. If
the accumulation result is less than the reference number, the
comparator outputs a 1 and is selected by the multiplexer as
the output of SC-based ReLU block. Otherwise, the output
is determined by the FSM inside the SC-based ReLU block.
Please note that the proposed SC-based ReLU will not incur
any extra latency.

The algorithm of the proposed SC-based ReLU is illustrated
in Algorithm 1. Please note that the Positive signal is used to
adjust the SC-based ReLU for different types of APCs. When
the outputs of APCs represent the number of 1’s among inputs,
the normal logic is assigned to the output of SC-based ReLU.
When the outputs of APCs represent the number of 0’s, the
inverted logic is assigned. The purpose is to make the output
of SC-based ReLU (and thereby the whole FEB) not affected
by the types of APCs.

Figure 7 shows the MATLAB simulation results of the pro-
posed SC-based ReLU using different bit-stream lengths, and
the simulation curves of the clipped-ReLU are also depicted.

Algorithm 1: Proposed SC-based ReLU hardware
input : BitMatrix is the output of the previous pooling block

each column of the matrix is a binary vector
Cyclehalf is the half of the passed clock cycles
S is the FSM state number
N is the input size of a feature extraction block
m is the length of a stochastic bit-stream
Positive indicates whether APC’s output represents the

number of 1’s
output: Z is a bit-stream output by ReLU
Smax = S; //upper bound of the state
Shalf = S/2;
State = Shalf ; //State is used to record the state history
Accumulated = 0; //to accumulate each column of BitMatrix
if Positive == 1 then

ActiveBit = 1; InactiveBit = 0;
else

ActiveBit = 0; InactiveBit = 1;
for i++ < m do

BinaryV ec = BitMatrix[: i]; //current column
State = State+BinaryV ec ∗ 2−N ; //update current state
//accumulate current column of the input
Accumulated = Accumulated+BinaryV ec;
if Accumulated < Cyclehalf then

Z[i] = ActiveBit;
//enforce the output of ReLU to be greater than or equal to 0,
//otherwise the output is determined by the following FSM

else
if State > Smax then

State = Smax;
else

if State < 0 then
State = 0;

if State < Shalf then
Z[i] = ActiveBit;

else
Z[i] = InactiveBit;

Fig. 7. Results of the proposed SC-based ReLU using different bit-stream
length (a) 1024, (b) 512, (c) 256, (d) 128.

We randomly generate 1000 numbers for each experiments to
test the SC-Based ReLU accuracy. As each bit is processed
in one clock cycle, the Cyclehalf in Algorithm 1 represents
the half of the number of passed bits. In this simulation,
we set Positive = 1 to count the number of ones in the
bit-stream. The average inaccuracies (the difference between
the clipped-ReLU and the SC-based ReLU) of using 1024-bit
length and 128-bit length are 0.031 and 0.057, respectively.
We can conclude that SC-based ReLU can guarantee a high
accuracy in DCNNs.

C. Inner-Product Block Optimization

We optimize the APC-based inner-product block with a
potentially large number of inputs. Inner-product calculates the
“summation of products” and involves both multiplication and
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addition operations. Hence, we optimize both multiplication
and APC-based addition in SC.

1) Transmission Gate Based Multiplication: As discussed
before, the multiplications are implemented with XNOR gates
in bipolar SC. Generally, an XNOR gate costs at least sixteen
transistors if it is implemented in static CMOS technology,
and its simplest structure in gate-level is shown in Figure
8 (a). However, if the XNOR gate is implemented with
transmission gates, only eight transistors are needed, leading
to 50% savings in hardware. The main drawback of potential
voltage degradation of a transmission gate does not cause
latent errors for three reasons: i) the multiplication operations
are only performed in the first sub-layer of each network layer,
so any latent voltage degradation will not be significant; ii) the
following APCs and activation blocks are implemented with
static CMOS technology, so any minor voltage degradation
introduced by transimission gates will be compensated; iii) SC
itself is soft error resilient, i.e., a soft error at one single bit
has a negligible impact on the whole bit-stream. The structure
of the transmission gate based XNOR gate is illustrated in
Figure 8 (b).

2) APC Optimization: Approximate Parallel Counter
(APC) [34] has been designed for efficiently performing
addition with a large number of inputs in SC domain. More
specifically, it efficiently counts the total number of 1’s in each
“column” of the input stochastic bit-streams and the output
is represented by a binary number, as shown in Figure 4
(c). The APC consists of two parts: approximate units (AU),
implemented by a combination of simple two-input gates such
as AND/OR gate, and an accurate Parallel Counter (PC) with
size significantly reduced. The PC circuit consists of a network
of full adders for precisely counting the total number of
1’s among the input bit-streams. Although the literature [34]
presented the operation principle of APC, there is no existing
work targeting at optimization of the performance and energy
efficiency. We mitigate this limitation by presenting a holistic
optimization framework of APC in the following.

First, we investigate the design optimization of adder trees
in PC to refine APC design. A conventional PC uses full adders
and half adders to calculate the number of active inputs (the
total number of 1’s). Each adder reduces a set of three inputs
(for full adder) or two inputs (for half adder) with weight 2n

into an output line with weight 2n and another output with
weight 2n+1, which correspond to the summation and output
carry, respectively. To reduce the area and power & energy
consumption of APC, we design adder tree using inverse
mirror full adders [45], i.e. mirror full adders without output
inverters, whose outputs are the logical inversion of summation
and carry out bits. Compared to a full adder synthesis results
(from Synopsys Design Compiler) requiring 32 transistors,
an inverse mirror full adder only costs 24 transistors. An

A

B
A

B
Z Z

(a) (b)

Fig. 8. XNOR gate implementations. (a) Static CMOS design, (b)
Transmission gate design.
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Fig. 9. (a) Proposed 16-input APC structure, (b) Proposed 25-input APC
structure.

adder tree design is available for the PC using inverse full
adders, in which the odd layer (of adders) outputs the inverse
values of summation and output carry, representing the number
of inactive inputs (the total number of 0’s). The results are
inverted back in the subsequent even layer of adders. Inspired
by the same idea of using inverse logic, NAND/NOR gates
can be used to construct the AU layer instead of AND/OR
gates, to achieve further delay/area reductions.

Depending on the input size, the output of the proposed
APC can either represent the number of 1’s among the
input bit-streams, or the number of 0’s. Please note that the
activation function needs to be modified if the APC output
represents the number of 0’s as discussed in the ReLU block
design. As an example, the proposed 16-input APC design is
shown in Figure 9 (a).

Next, we discuss the APC designs for input size that is not
a power of two. An example of the proposed 25-input APC is
shown in Figure 9 (b). Two modifications are needed compared
with the previous case. First, arithmetic inverse half adders are
required to calculate the number of inactive inputs (number of
0’s among inputs). In addition, in this case, the final output
of APC should be the non-inverted value compared with the
inputs to the adder tree. In other words, if the inputs of adder
tree represent the number of 0’s (inactive inputs), then the
APC output must also be the number of 0’s. The reason is as
follows: the summation of the number of 0’s and the number
of 1’s should be equal to the input size (e.g., 25 as shown in
Figure 9 (b)), whereas the inverse operation in adders assumes
that their summation is 2N+1, where N is the number of bits
in the output binary number. Thus, the final layer of adder



7

TABLE I
Comparison of inner-product blocks before and after optimization

using 1024-bit-stream.

Input Size Approach Optimization Delay(ns) Area(µm2) Energy (fJ)

16 SC before 0.57 51.1 26.2
after 0.49 26.6 22.8

binary - 2.02 2759.4 4775.4

32 SC before 0.88 134.3 133.9
after 0.78 82.7 122.3

binary - 2.15 5589.7 10618.2

64 SC before 1.24 253.5 328.3
after 1.12 147.1 294.3

binary - 2.38 11279.9 24095.1

128 SC before 1.46 597.4 1069.7
after 1.32 380.9 996.2

binary - 2.61 22664.7 53492.0

256 SC before 1.78 1177.6 2652.3
after 1.62 740.3 2450.6

binary - 2.84 45438.7 117201.1

tree should use either adders or inverse adders to generate
non-inverted results compared with the inputs.

Table I shows the comparison of inner-product blocks before
and after optimization using the 1024-bit-stream. After apply-
ing the optimization on the inner-product blocks, the hardware
performance in terms of clock period, area, and energy are
all reduced, especially the area. Table I also demonstrates the
advantages of SC over conventional binary computing. We can
observe that the SC delay/area/energy are much smaller than
binary’s, this is because SC based inner-product blocks taking
multiple input bit-streams in a parallel manner with simple
gate logic, while the binary logic compute equivalent binary
numbers bit by bit with complex gate logic.

D. Weight Storage Optimization
The main computing task of an inner-product block is to

calculate the inner-products of xi’s and wi’s. xi’s are inputs
of neurons, while wi’s are weights obtained during training,
stored, and used in the hardware-based DCNNs. The number
of weights is skyrocketing as the structure of DCNNs becomes
much deeper and more complex. For example, LeNet-5 [3]
includes 431k parameters, AlexNet [5] has around 61M pa-
rameters, and VGG-16 [40] contains over 138M parameters.
It is urgent to explore the techniques to store the tremendous
parameters efficiently. In convolutional layers, weights are
shared within filter domain, while in fully connected layers,
the number of weights is enormous and independent. Thus the
weights need to be either shared or reduced. The reduction of
weights has been explored in many previous works such as
[20,46], however, weight sharing lacks the discussion. In this
section, we present a simple weight reduction method and a
clustering based weight sharing optimization. The methods
presented can be combined with weight reduction/pruning
methods in related works.

We use Static random access memory (SRAM) for weight
storage due to its high reliability, high speed, and small area.
The specifically optimized SRAM placement schemes and
weight storage methods are imperative for further reductions
of area and power (energy) consumptions. In general, DCNN
will be trained with single floating point precision. Thus on
hardware, up to 64-bit SRAM is needed for storing one weight
value in the fixed point format to maintain its original high
precision. This scheme can provide high accuracy as there
is almost no information loss of weights. However, it also
brings about high hardware consumptions in that the size of

SRAM and its related read/write circuits is increasing with the
increasing of precision of the stored weight values.

According to our software-level experiments, many least
significant bits far from the decimal point only have a very
limited impact on the overall application-level accuracy, thus
the number of bits for weight representation in the SRAM
block can be significantly reduced. We adopt a mapping
equation that converts a weight in the real number format to
the binary number stored in SRAM to eliminate the proper
numbers of least significant bits. Suppose the weight value is
x, and the number of bits to store a weight value in SRAM is
w (which is defined as the precision of the represented weight
value in this paper), then the binary number to be stored for
representing x is:

y =
Int(x+1

2
× 2w)

2w
(2)

where Int() means only keeping the integer part. Please note
that the binary numbers stored in SRAMs are fed into efficient
Random Number Generators (RNGs) to generate stochastic
numbers at runtime. For instance, a 6-bit binary number can
be used to generate a stochastic number with 1024-bit length
through RNG. Hence, there is no need to store the entire 1024
bit stochastic number in SRAM. The overhead of RNGs is also
taken into account in our experiments. Therefore, this weight
storage method can significantly reduce the size of SRAMs
and their read/write circuits through decreasing the precision.
The area saving achieved by this method based on estimations
from CACTI 5.3 [47] is 10.3×.

Weight Clustering. As mentioned before, a state-of-the-
art DCNN contains millions of weights. A large amount of
SRAM will be consumed for storing all these weights. In fact,
many weight values can be rounded to a neighboring value
without significant accuracy loss according to our experiments.
Therefore, we investigate the k-means based weight clustering
method that clusters all weights into clusters and rounds the
weights in each cluster to one centroid value. Consequently,
only a part of weight values need to be stored in SRAM. A
multiplexer is used to select a weight from a SRAM block for
each wi of an inner product block, and the selection signals
are stored in SRAM block as well. Suppose the filter size
is p × p, each weight occupies n bits, and storing one bit
consumes t units hardware resources on average (including
read/write circuits). Accordingly, the size of an SRAM block
before clustering is p2×n×t. After clustering, only s weights
are needed, thus the size of an SRAM block for storing weights
is s×n×t. Since an inner product block has p2 weight values,
p2 multiplexers are required for each inner product block, and
p2× log2s× t units hardware resources are needed for storing
the selection signals. Suppose the size of a multiplexer is m
units hardware resources, and there are q inner product blocks
for extracting a feature map. The area saving achieved by the
clustering method is p2 × n× t− (s× n× t+ p2 × log2s×
t+ p2 ×m× q) for each feature map.

As shown in Figure 10(a), when the clustering is performed
on all weights of the network, the application-level error rate
vibrates obviously with the change of the clustering number,
and the error rates in many cases exceed 10%. It indicates that
the clustering on all weights is not practicable.

Then we perform the clustering on weights within each
single layer to explore the application-level accuracy perfor-
mance. As illustrated in Figure 10(b), when the clustering
is performed on each layer from Conv1 to FC2, desirable
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(a)

(b)

Fig. 10. Application-level error rates for (a) clustering through all layers,
(b) clustering within each layer and layer-wise clustering.

application-level accuracy can be obtained while the number
of clusters is more than three. Inspired by the experimental
results, we investigate the application-level accuracy when
the clustering is performed on the whole network but each
layer is individually clustered (called layer-wise, and different
layers may have the different number of clusters). When all
layers are individually clustered into five or more clusters, the
application-level error rate is less than 2%.

E. Optimization on Feature Extraction Block and the Overall
DCNN

1) Co-optimization on FEBs: In the FEB, the inner-product,
max pooling and ReLU function blocks are connected in
series, and the imprecision of one function block will be
propagated to the subsequent block(s) within this FEB. Con-
sidering the intra-FEB imprecision propagation effect due to
the cascade connection, the parameters of the inner-product,
max pooling and ReLU function blocks inside one FEB should
be jointly optimized. The goal of co-optimization through the
SC-based FEB is to approach the accuracy level of software
FEB.

We propose an optimization function S = f(N), where
S and N denote the FSM state number in ReLU and the
fan-in, respectively. First of all, given N , each inner-product
block is optimized. Next, in order to derive the optimization
function, we simulate each FEB with all the function blocks
connected together, and select the S that yields the highest
precision under a given N . Below is the empirical function
that is extracted from comprehensive experiments obtaining
the optimal state number providing a high precision:

S = f(N) ≈ 2 ·N (3)

Figure 11 shows the optimized FEB precision under different
combinations of the input size and the bit-stream length. One
can observe that the FEB can work with a short bit-stream
length (i.e., 128 bits) without incurring significant accuracy
degradation. Moreover, as a desirable effect, the accuracy
will increase with the increase of the input number, because
the imprecisions tend to mitigate each other with the input
size increase. Table II summarizes the hardware performance
of FEBs with the different input sizes when the bit-stream

Fig. 11. Optimized FEB precision vs input size under different bit-stream
lengths.

Fig. 12. Layout of a 64-input FEB using the proposed APC, pooling and
activation blocks.

length is 1024, which shows a sub-linear growth in terms of
area/power/and energy with the increase of input size.

Using the optimization function, we derive the optimal
configuration of a 64-input FEB with four 16-input APCs
and 4-to-1 pooling. The full customized layout design of this
FEB using Cadence Virtuoso is shown in Figure 12. Note that
multiple D flip-flop (DFF) arrays are used to temporarily hold
inputs due to the limited I/O bandwidth of the foundry. Shown
in Figure 13, we taped out the 8-bit and the 16-bit FEB as the
proof-of-concept. We tested our chips using a Altera Cyclone
V FPGA 14, random bit-streams are fed into the FEB chip, the
results are displayed on an oscilloscope as Figure 15 shows.

2) Pipeline Based DCNN Optimizations: In this work, we
propose a two-tier pipeline based network optimization for
HEIF as shown in Figure 16. The first-tier pipeline is placed
in between different convolutional and fully-connected layers,
i.e., inserting DFFs between consecutive layers to hold the
temporary results, which enables pipelining across the deep
layers of DCNNs. The second-tier pipeline is placed within a
layer which is inspired by [48]. More specifically, based on
the delay results of inner product, pooling and ReLU blocks,
we insert DFFs between the pooling unit and ReLU block in
order to further reduce the system clock period. We place the
pooling unit in the first stage. Because after pooling, the output
size is reduced so that we can use less DFFs to save area &
power & energy. To show the effectiveness of pipelining within

TABLE II
Hardware performance of FEBs with the different input sizes using

1024-bit-stream w/ and w/o pipeline based optimization

Optimization Pipelining Non-pipelining
Input size 16 32 64 128 16 32 64 128

Clock Period (ns) 1.74 1.82 2.08 2.16 2.2 2.51 2.67 2.79
Area (µm2) 910.8 1162.4 1569.4 2305.2 904.4 1102.3 1453.9 2149.5
Power (µW ) 556.6 771.2 928.4 1409.4 421.5 490.3 659.9 973.5
Energy (fJ) 968.4 1403.5 1931.0 3044.2 927.3 1230.8 1762.0 2716.1
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(a) (b)

Fig. 13. FEB tape-out (a) 8-bit chip, (b) 16-bit chip.

Fig. 14. Testing platform for the fabricated chips

a layer, we also evaluate the hardware costs for FEBs without
pipelining in the right section in Table II. Comparing the
results in Table II, we observe that the pipelining optimization
significantly reduce the delay (clock period) by about 22% in
average with slight area & power & energy increase by DFFs.

An additional key optimization knob is the bit-stream
length. A smaller bit-stream length in SC can almost improve
the energy efficiency in a proportional manner. However,
we must ensure that the overall application-level accuracy
is maintained when the bit-stream length is reduced, and
therefore, a joint optimization is required. In this procedure,
we first optimize the accuracy of each function block, i.e.,
APC, max pooling and ReLU, to reduce the imprecision within
an FEB. Furthermore, we conduct co-optimization through
FEB to find the best configuration of each unit inside one
FEB, in order to mitigate the propagation of imprecision and
maintain the overall application-level accuracy.

IV. RESULTS

The proposed HEIF is to accelerate Deep Convolutional
Neural Networks (DCNNs). Besides,it is applicable to various
deep models such as Deep Belief Networks (DBNs), Long
Short-Term Memory (LSTM), etc., where similar compu-
tations are conducted. In this section, to demonstrate the
effectiveness of the proposed HEIF, we perform thorough
optimizations on two widely used DCNNs as examples, i.e.,
LeNet-5 [49] and AlexNet [5], to minimize area and power
(energy) consumption while maintaining a high application-
level accuracy. The feature extraction blocks, the pipeline, the
bit-stream length, and the weight storage schemes are carefully
selected/optimized in the procedure.

The LeNet-5 is a widely used DCNN structure with a con-
figuration of 784-11520-2880-3200-800-500-10. The MNIST
handwritten digit image dataset [50] is used to evaluate LeNet-
5, which consists of 60,000 training data and 10,000 testing
data. The AlexNet, on the other hand, is a much larger
DCNN with a configuration of 290400-186624-64896-64896-
43264-4096-4096-1000. The accuracy of AlexNet is measured
on the ImageNet dataset (ILSVRC2012)[43], which contains

(a)

(b)

Fig. 15. Tested Waveform for (a) 8-bit chip, (b) 16-bit chip.
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Fig. 16. Two-tier pipeline design in the HEIF framework.

1.28M training images, 50k validation images, and 100k test
images with 1,000 class labels.. The delay, power and energy
of FEB are obtained from synthesized RTL under Nangate
45nm process [51]. The key peripheral circuitry in the SC
domain, e.g., the random number generators, are developed
using the design in [42] and synthesized using Synopsys
Design Compiler, whereas the SRAM blocks are estimated
using CACTI 5.3 [47].

Table III concludes the performance and hardware cost
of the proposed HEIF on LeNet-5 implementation. One can
observe that the proposed HEIF can realize the entire LeNet-
5 with only 0.10% accuracy degradation compared to the
software accuracy of our software-based implementations.
Table IV compares the performance and hardware cost of the
proposed HEIF with the existing hardware platforms on the
MNIST dataset. It can be observed that compared with the
other platforms, the proposed HEIF yields the highest through-
put, area efficiency and energy efficiency while approaching
the highest software accuracy, i.e. 99.77%, demonstrating the
effectiveness of the SC technology and our proposed holistic
optimization procedure. Compared with the high-performance
version of SC-DCNN in [1], the proposed method achieves
up to 0.81% accuracy increase, and 4.1×, 6.5× and 5.5×
improvement in terms of throughput, area efficiency and
energy efficiency, respectively. Compared with the low-power
version of SC-DCNN, the proposed method achieves improved
accuracy due to the overall optimization on the cascade
connection of function blocks and the novel ReLU design,
whereas the area, power and energy efficiency gain are mainly
achieved through APC optimization, pipelining technique, bit-
stream length reduction, and weight storage optimization.

Next we present the results of HEIF on the large-scale
AlexNet applications. We trained AlexNet using ImageNet
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TABLE III
Application-level performance and hardware cost of LeNet-5

implementation using the proposed HEIF.

Bit ReLU ReLU Clipped Area Power Delay Energy
Stream Validation Test Validation Test (mm2) (W) (ns) (µJ)
1024 1.10% 0.99% 1.07% 0.88%

22.9 2.6

2498.6 6.4
512 1.09% 0.98% 1.12% 0.87% 1249.3 3.2
256 1.12% 1.00% 1.13% 0.91% 624.6 1.6
128 1.08% 1.01% 1.18% 0.93% 312.3 0.8

software 1.09% 0.94% 0.94% 0.83% -
highest software accuracy in the literature [52] 0.23% -

training set by our own configurations. To follow the stochastic
computing paradigm, we use scaled pixel values within [0,1]
instead of original range [0,255]. Because data pre-processing
first deducts the mean value of each image from each pixel
value, the input then ranges in [-1,1]. Moreover, we use clipped
ReLU to restrain the activation output to be [0,1]. We also
move pooling units before ReLU so that we can save resource
of ReLU in the aspect of hardware cost. The trained network
achieves top-1 and top-5 accuracies of 56.56% and 80.48%
on the test set, respectively. To the best of our knowledge,
the existing hardware platforms either implemented one com-
putation layer of the AlexNet [20], built a reconfigurable
circuit to accelerate each layer separately [22], or designed a
reconfigurable system that can be connected in a chip system
to deal with large computation tasks [21]. Table V lists the
existing hardware platforms for AlexNet implementation. As
EIE [20] provided the results on the fully-connected FC7
layer of AlexNet, we evaluate the proposed HEIF on the
same FC7 layer of AlexNet. We apply the same weight
compression technique in [55], making a fair comparison.
Note that Table V is a list of existing platforms instead of
a strict comparison table, because the implementation scales
and method of different works are not the same (and some
are not discussed in details in papers). One can observe from
Table V that the proposed HEIF has the smallest footprint due
to the small footprint of each stochastic computing component,
and achieves the best performance in terms of throughput, area
efficiency and energy efficiency.

Finally, we investigate the capacity of HEIF on implement-
ing each layer and the full AlexNet. We evaluate the hardware
performance of each layer in AlexNet separately and conclude
the area, power and layer delay in Table VI. Table VI also
concludes the accuracy performance of the proposed HEIF on
the full AlexNet. It is observed that the proposed HEIF can
realize the entire AlexNet with only 1.35% top-1 accuracy
degradation and 1.02% top-5 accuracy degradation compared
to the software accuracy of our software-based implementa-
tions. As shown in Table VI, the convolution layer Conv5 and
fully-connected layers FC6-FC8 can be implemented using the
proposed HEIF efficiently. However, one should note that due
to a large number of neurons in convolution layers Conv1-
Conv4, the area and power consumptions of these layers are
significant. Hence to make tape-out possible, we have to adopt
a reconfigurable approach to implement the large layers in a
time-multiplexed manner, which is also a future extension of
this work.

V. DISCUSSION

A. Scalability
The proposed SC paradigm is able to process the compu-

tation as the (convolutional) neural network architecture gets
deeper with the help of pipelining. Since the input size in

each inner-product function block in convolutional layers is
the corresponding filter size, the key challenge the SC-based
components face is the booming of inputs for each inner-
product function block in the fully-connected layers.

The experimental results show that a 4096-input inner-
product function block consumes power as high as 6.2mW and
delay is 3.3ns which is longer than smaller blocks. Meanwhile,
it is as big as 11, 973µm2 and needs 20.64pJ to drive a
large APC. Considering in AlexNet, FC7 layer contains 4096
inner-product function blocks, the concurrent circuit with such
power & energy consumption is not achievable. Thus the
model must be compressed to reduce the input size in FC
layers. We applied compressed model mentioned in [55], the
input size of each neuron is pruned to as low as 9% of the
original number. The path delay is then improved by 50%
because of the shorter path along hierarchical adder in APC.
And the power and energy are reduced to 0.9mW and 6.3pJ,
respectively, while area efficiency is improved by 9×.

With the compressed design of inner-product function block,
we can scale the SC-based framework to the state-of-the-art
large-scale DCNNs, considering that the computation within
those DCNNs is covered by our framework. Some special
normalization layers such as Local Response Normalization
(LRN) and regularization layers such as Dropout are the
competition-directed optimization, which can be removed with
a slight sacrifice of accuracy [5,56] to improve the overall
efficiency of the network. These non-resource-exhausting op-
erations are the next step to fully design a general SC-based
framework for DCNN which is also the future work for other
hardware acceleration researches for DCNNs.

B. Energy Efficiency
SC-based design has achieved high energy efficiency which

is shown in Table IV and Table V. However, the consumed
energy is proportional to the stage delay of the network and
the length of bit-streams. Since bit-streams are processed
sequentially in the network and the hardware building blocks
are given, reducing the length of bit-streams can efficiently
reduce the energy consumption without increasing the power.
This is a key characteristic of SC as long as the overall
accuracy satisfies certain constraints. Shown in Table III, when
the bit-stream length is reduced to 128, compared with a bit-
stream length of 1024, the energy efficiency is increased by
8× with only 0.11% validation application-level accuracy loss
and 0.05% test accuracy loss. Meanwhile, the footprint and
power are not increased, for the hardware is not modified.
There is a potential for a shorter bit-stream and much less
energy which is due to the trade-off between accuracy and
energy efficiency. Note that the energy & power related results
are the synthesis results using Synopsys Design Compiler,
the power dissipation on the clock tree is neglected although
that on the sequential elements (DFFs) is already accounted
for. Compared with binary-based designs, SC-based designs
(e.g., the proposed HEIF) do not contain a large number
of sequential elements because of the sequential processing
nature. Also, the operating frequency of the proposed HEIF
(410MHz) is not overly high. Therefore, the energy dissipation
induced by the clock tree will not be very significant.

C. Application-level Accuracy
The proposed highly-efficient SC-based framework ensures

high application-level accuracy of DCNN. Taking LeNet and
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TABLE IV
Comparison with existing hardware platforms for handwritten digit recognition using the MNIST [50] dataset

Platform Network Year Platform Clock Area Power Accuracy Throughput Area Efficiency Energy Efficiency
Type Type (MHz) (mm2) (W) (%) (Images/s) (Images/s/mm2) (Images/J)

2×Intel Xeon W5580 CNN 2009 CPU 3200 263 156 99.17 656 2.5 4.2
Nvidia Tesla C2075 CNN 2011 GPU 1150 520 202.5 99.17 2333 4.5 3.2

Minitaur [53] ANN1 2014 FPGA 400 N/A ≤1.5 92.00 4880 N/A ≥3253
SpiNNaker [54] DBN 2015 ARM 150 N/A 0.3 95.00 50 N/A 166.7
TrueNorth [46] SNN2 2015 ASIC Async 430 0.18 99.42 1000 2.3 9259

SC-DCNN (No.6)[1] CNN 2016 ASIC 200 36.4 3.53 98.26 781250 21439 221287
SC-DCNN (No.11)[1] CNN 2016 ASIC 200 17.0 1.53 96.64 781250 45946 510734

HEIF(128bit) CNN 2016 ASIC 410 22.9 2.6 99.07 3203125 139874 1231971
1ANN: Artificial Neural Network; 2SNN: Spiking Neural Network

TABLE V
List of existing hardware platforms for image classification using (part of) the AlexNet [5] on ImageNet [43] dataset

Platform Year Platform Memory Area Power Throughput Area Efficiency Energy Efficiency
Type Type (mm2) (W) (Images/s) (Images/s/mm2) (Images/J)

2×Intel Xeon W5580 2009 CPU DRAM 263 156 139 0.5 0.9
Nvidia Tesla C2075 2011 GPU DRAM 520 202.5 573 1.1 2.8

DaDianNao [21] 2014 ASIC eDRAM 67.7 15.97 147938 2185 9263
Eyeriss [22] 2016 ASIC DRAM 12.25 0.28 35 2.8 125

EIE-64PE [20] 2016 ASIC SRAM 40.8 0.59 81967 2009 138927
EIE-256PE [20] 2016 ASIC SRAM 63.8 2.36 426230 6681 180606
HEIF(128bit) 2016 ASIC SRAM 24.7 1.9 2520161 102030 1326400

TABLE VI
Hardware cost and performance of the whole AlexNet implementation

using the proposed HEIF

Layer Layer Type Area(mm2) Power(W) Delay(ns)
Conv1 Conv-Max-ReLU 366.2 66.4 3.0
Conv2 Conv-Max-ReLU 116.2 20.0 3.1
Conv3 Conv-Max-ReLU 131.9 23.0 2.7
Conv4 Conv-Max-ReLU 131.1 23.0 2.7
Conv5 Conv-Max-ReLU 20.1 3.3 2.7
FC6 FC-dropout 45.1 2.0 2.1
FC7 FC-dropout 24.7 1.9 2.1
FC8 FC-softmax 12.8 0.5 2.1
Total - 848.1 140.2 -

Top-1 accuracy software: 56.56% HEIF: 55.21%
Top-5 accuracy software: 80.48% HEIF: 79.46%

AlexNet as examples for DCNNs, shown in Table III and Table
VI, the proposed framework can achieve as high as 99.07%
test accuracy which outperforms the previous SC-based related
work [1] on LeNet-5. Please note the trained software model
for LeNet in this work is able to achieve 99.17% test accuracy,
which means the HEIF only downgrades 0.1% accuracy to
achieve much higher energy efficiency. Moreover, in the large-
scale application of ImageNet classification of 1,000 labels,
using AlexNet, the proposed framework can achieve as high
as 79.46% top-5 accuracy which is only 1.02% performance
degradation from the trained model.

This is because the combination of DCNN and SC paradigm
along with the proposed optimization framework mitigates the
errors brought by the imprecision of each function block. In
LeNet-5, an FEB takes 25 inputs which shows an imprecision
of 0.11, and the fully-connected neuron causes an imprecision
of 0.06. Similarly, in AlexNet, an FEB taking 121, 25, 9
inputs gives imprecision of 0.07, 0.11, 0.18 respectively.
Interestingly, when translating the hardware-level imprecision
to application-level accuracy, the latter is not downgraded

significantly, with only 0.1% test accuracy loss in LeNet
and 1% top-5 accuracy in AlexNet. This is because (i) the
imprecisions can be both positive or negative and can mitigate
each other when the input size is large, and can be mitigated
in the pooling block and by the scaling function of inner
products, and (ii) random and small deviations of hardware
results will not significantly affect the software classification
results. The theoretical analysis and quantitative proof of
translating hardware-level imprecisions into application-level
errors will be another promising direction of SC research and
the more general research area of approximate computing.

VI. RELATED WORKS

References [5,10,57,58] leveraged the parallel computing
and storage resources in GPUs to efficiently implement DC-
NNs. FPGA-based accelerators are another attractive option
for the hardware implementation of DCNNs [12,13] due to
its programmability, the high degree of parallelism and short
develop period. However, the current GPU- and FPGA-based
implementations still exhibit a large margin of performance
enhancement and power reduction. This is because (i) GPUs
and FPGAs are general-purpose computing devices not specif-
ically optimized for executing DCNNs; and (ii) the relatively
limited signal routing resources in such general platforms
restrict the performance of DCNNs which require high inter-
neuron communication.

Alternatively, ASIC-based implementations of DCNNs have
been recently exploited to overcome the limitations of general-
purpose computing approaches. Three representative state-of-
the-art works on ASIC-based implementations are Eyeriss
[22], EIE [20], and the DianNao family, including DianNao
[59], DaDianNao [21], ShiDianNao [60], and PuDianNao [61].
Eyeriss [22] is an energy-efficient reconfigurable accelerator
for the large CNNs with various shapes. EIE [20] focuses
specifically on the fully-connected layers of DCNN and
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achieves high throughput and energy efficiency. The DianNao
family [59]-[61] is the series of hardware accelerators designed
for a variety of machine learning tasks (especially the large-
scale DCNNs) with a special emphasis on the impact of
memory on accelerator design, performance, and energy.

To provide the high energy efficiency and low hardware
footprint required in embedded and portable devices, novel
computing paradigms are needed. SC-based design of neural
networks has been shown an attractive candidate to meet
the stringent requirements and facilitate the widespread of
DCNNs in low-power personal, embedded, and autonomous
systems. [33] utilized stochastic logic to implement a radial
basis function-based neural network. [32] presented the neuron
design with SC for deep belief network. The design space ex-
ploration of SC-based DCNNs is recently performed in [1] for
LeNet-5. However, there is no existing work that 1) optimizes
energy efficiency without compromising application-level ac-
curacy and 2) investigates comprehensive design optimizations
of SC-based DCNNs with a large scale (e.g. AlexNet with
ImageNet-scale) and wide applications.

VII. CONCLUSION

In this paper, we present HEIF, a highly efficient SC-based
inference framework of the large-scale deep convolutional
neural networks, with broad applications on (but not limited
to) both LeNet-5 and AlexNet, in order to achieve ultra-
high energy efficiency and low area/hardware cost. In this
framework, we re-design the Approximate Parallel Counter
and optimize stochastic multiplication while proposing for the
first time SC-based Rectified Linear Unit (ReLU) activation
function to track with the recent advances in software models.
A memory storage optimization method is investigated to store
weights efficiently. Lastly, overall optimizations on the cascade
connection of function blocks in DCNN, pipelining technique,
and bit-stream length optimization are investigated in order
to achieve maximum energy efficiency while maintaining
application-level accuracy requirements. The proposed frame-
work achieves very high energy efficiency of 1.2M Images/J
and 1.3M Images/J, and high throughput of 3.2M Images/s
and 2.5M Images/s, along with very small area of 22.9 mm2

and 24.7 mm2 on LeNet-5 and AlexNet respectively. HEIF
outperforms previous SC-DCNN by the throughput of 4.1×,
by area efficiency of up to 6.5× and achieves up to 5.6×
energy improvement.
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