
Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

Normalization and dropout for stochastic computing-based deep
convolutional neural networks

Ji Lia,⁎, Zihao Yuana, Zhe Lib, Ao Renb, Caiwen Dingb, Jeffrey Drapera,c, Shahin Nazariana,
Qinru Qiub, Bo Yuand, Yanzhi Wangb

a University of Southern California, Department of Electrical Engineering, Los Angeles, CA 90089, USA
b Syracuse University, Department of Electrical Engineering and Computer Science, Syracuse, NY 13210, USA
c University of Southern California, Information Sciences Institute, Marina del Rey, CA 90292, USA
d City University of New York, City College, Department of Electrical Engineering, New York, NY 10031, USA

A R T I C L E I N F O

Keywords:
Deep learning
Deep convolutional neural networks
Dropout
Normalization

A B S T R A C T

Recently, Deep Convolutional Neural Network (DCNN) has been recognized as the most effective model for pattern
recognition and classification tasks. With the fast growing Internet of Things (IoTs) and wearable devices, it becomes
attractive to implement DCNNs in embedded and portable systems. However, novel computing paradigms are
urgently required to deploy DCNNs that have huge power consumptions and complex topologies in systems with
limited area and power supply. Recent works have demonstrated that Stochastic Computing (SC) can radically
simplify the hardware implementation of arithmetic units and has the potential to bring the success of DCNNs to
embedded systems. This paper introduces normalization and dropout, which are essential techniques for the state-
of-the-art DCNNs, to the existing SC-based DCNN frameworks. In this work, the feature extraction block of DCNNs
is implemented using an approximate parallel counter, a near-max pooling block and an SC-based rectified linear
activation unit. A novel SC-based normalization design is proposed, which includes a square and summation unit, an
activation unit and a division unit. The dropout technique is integrated into the training phase and the learned
weights are adjusted during the hardware implementation. Experimental results on AlexNet with the ImageNet
dataset show that the SC-based DCNN with the proposed normalization and dropout techniques achieves 3.26% top-
1 accuracy improvement and 3.05% top-5 accuracy improvement compared with the SC-based DCNN without these
two essential techniques, confirming the effectiveness of our normalization and dropout designs.

1. Introduction

Deep Convolutional Neural Network (DCNN) has recently achieved
unprecedented success in various applications, such as image recogni-
tion [1], natural language processing [2], video recognition [3], and
speech processing [4]. As DCNN breaks several long-time records in
different popular datasets, it is recognized as the dominant approach
for almost all pattern detection and classification tasks [5]. With the
fast advancement and widespread deployment of Internet of Things
(IoTs) and wearable devices [6], implementing DCNNs in embedded
and portable systems is becoming increasingly attractive.

As large-scale DCNNs may use millions of neurons, the intensive
computation of DCNNs inhibits their deployment from cloud clusters
to local platforms. To resolve this issue, numerous hardware-based
DCNNs that use General-Purpose Graphics Processing Units (GPGPUs)
[7,8], FPGA [9] and ASIC [10,11] are proposed to accelerate the deep

learning systems with huge power, energy and area reduction com-
pared with software. Nevertheless, novel computing paradigms are
required to make DCNNs compact enough for light-weight IoT and
wearable devices with stringent power requirements.

The recent advancements [12–17] demonstrate that Stochastic
Computing (SC), as a low-cost and soft error resilient alternative to
conventional binary computing [18–21], can radically simplify the
hardware footprint of arithmetic units in DCNNs and has the potential
to satisfy the stringent power requirements in embedded devices.
Stochastic designs for fundamental operations (i.e., inner product,
pooling, activation, and softmax regression) of DCNNs have been
proposed in [12–14,16,17], and medium scale DCNNs have been
implemented in the SC regime [15].

Despite power and area efficiency achieved by the existing SC approach
compared with the conventional binary approach, no prior work has
investigated the two software techniques essential for large scale DCNNs:

https://doi.org/10.1016/j.vlsi.2017.11.002

⁎ Corresponding author.
E-mail addresses: jli724@usc.edu (J. Li), zihaoyua@usc.edu (Z. Yuan), zheli89@syr.edu (Z. Li), aren@syr.edu (A. Ren), cading@syr.edu (C. Ding), draper@isi.edu (J. Draper),

shahin@usc.edu (S. Nazarian), qiqiu@syr.edu (Q. Qiu), byuan@ccny.cuny.edu (B. Yuan), ywang393@syr.edu (Y. Wang).

INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

0167-9260/ © 2017 Published by Elsevier B.V.

Please cite this article as: Li, J., INTEGRATION the VLSI journal (2017), https://doi.org/10.1016/j.vlsi.2017.11.002

http://www.sciencedirect.com/science/journal/01679260
http://www.elsevier.com/locate/vlsi
https://doi.org/10.1016/j.vlsi.2017.11.002
https://doi.org/10.1016/j.vlsi.2017.11.002
https://doi.org/10.1016/j.vlsi.2017.11.002

(i) Local Response Normalization (LRN) and (ii) dropout. LRN is used to
form a local maxima and increase the sensory perception [1], which is vital
to state-of-the-art DCNNs, e.g., 1.2–1.4% accuracy improvement was
reported in AlexNet [1]. Dropout, mitigates the overfitting problem, which
results in poor DCNN performance on held-out test data when it is trained
with a small set of training data [22,23]. Without a careful design of LRN
and integration of dropout in the SC domain, the current SC framework
developed in [20,12,15] cannot be extended to more advanced and larger-
scaled DCNNs like AlexNet [1] without performance degradation.

In this paper, we integrate the LRN layer and dropout techniques into
the existing SC-based DCNN frameworks. Unlike the previous studies
[20,12,15], we consider max pooling and Rectified Linear Units (ReLU) in
DCNNs. This is because max pooling and ReLU are more commonly
applied in the state-of-the-art DCNNs with superior performance than
average pooling and hyperbolic tangent activation, respectively. The basic
building block in software DCNNs is Feature Extraction Block (FEB),
which extracts high-level features from the raw inputs or previous low-
level abstractions. Accordingly, we present an SC-based FEB design with
Approximate Parallel Counter (APC)-based inner product unit, hardware-
oriented max pooling, and SC-based ReLU activation. Due to the inherent
stochastic nature, SC-based FEB exhibits a certain amount of imprecision.
Hence, the entire FEB block is carefully optimized to achieve sufficient
accuracy. In addition, we propose an optimized SC-based LRN design that
is composed of division, activation, square and summation units. Finally,
the dropout is inserted in the software training phase and the learned
weights are adjusted during the hardware implementation.

The contributions of this work are threefold. First, we present the SC-
based FEB design with max pooling and ReLU, which are widely used in
most of the state-of-the-art DCNNs. The near-max pooling proposed in
[15] is improved to achieve better performance. Second, we are the first to
propose the stochastic LRN design for SC-based DCNNs. Third, this is the
first work to integrate the dropout technique into the existing SC-based
DCNN frameworks, in order to reduce the training time and mitigate the
overfitting issue. Experimental results on AlexNet with the ImageNet
dataset show that the SC-based DCNN with the proposed LRN and
dropout techniques achieves 3.26% top-1 accuracy improvement and
3.05% top-5 accuracy improvement compared with the SC-based DCNN
without these two essential techniques, demonstrating the effectiveness of
proposed normalization and dropout designs.

The remainder of this paper is organized as follows. Section 2
reviews related works. Section 3 gives an overview of DCNN architec-
ture and related stochastic computing building blocks. SC-based FEB
design is presented in Section 4, and Section 5 presents the proposed
normalization and dropout design. Section 6 shows the experimental
results and finally this paper is concluded in Section 7.

2. Prior work

A significant amount of research efforts have been invested in the
context of accelerating neural networks using hardware. The hardware
accelerators can be divided into three groups.

2.1. FPGA approach

Many FPGA-based accelerators [24–26] are proposed to implement
DCNNs by maximizing the underlying FPGA computing and bandwidth
resource utilization for operations in DCNNs. M. Motamedi et al.
proposed a design space exploration algorithm for obtaining the
implementation of a DCNN with the highest performance on a given
FPGA platform [24]. In order overcome the challenge of designing a
common architecture that can perform well for all convolutional layers,
A. Rahman et al. presented a flexible and highly efficient 3D neuron
array architecture for convolutional layers [25]. A hardware/software
co-designed library called Caffeine was proposed by Zhang et al. to
efficiently accelerate the DCNN on FPGAs with integration into the
industry-standard software deep learning framework Caffe [26].

2.2. Conventional ASIC approach

In parallel, various ASIC-based accelerators have come into existence
[10,11,27]. Chen et al. proposed the custom multi-chip machine-learning
architecture DaDianNao for state-of-the-art DCNNs [10]. To improve the
energy efficiency, Chen et al. presented Eyeriss with reduced data move-
ment, skipped zeros and data compression [11]. A deep compression
framework EIE was proposed by Han et al. to accelerate the sparse
matrix-vector multiplication with weight sharing [27].

2.3. Stochastic computing approach

Stochastic computing technology has become very attractive for
DCNN implementations due to its significantly reduced hardware foot-
print. Several fundamental SC components were designed by Brown and
Card for artificial neuron networks [28]. K. Kim et al. presented an
approximate parallel counter (APC) based SC neuron design for deep
belief network [20]. Li et al. proposed multiplexer/APC based SC neurons
for DCNNs [12]. Ren et al. developed SC-DCNN in [15], which achieved
low hardware footprint and low power (energy) consumption. However,
the normalization and dropout techniques, which are widely deployed in
the software-based DCNNs and essential for large-scale DCNNs, have not
been integrated in the SC-based hardware DCNNs.

3. DCNN architecture overview

3.1. DCNN architecture

As shown in Fig. 1, a general DCNN is composed of a stack of
convolutional layers, pooling layers, and fully-connected layers. A
convolutional layer is followed by a pooling layer, which extracts
features from raw inputs or the previous feature maps. A fully
connected layer aggregates the high level features, and a softmax
regression is applied to derive the final output. The basic component of
DCNN is the Feature Extraction Block (FEB), which conducts inner
product, pooling and activation operations.

Fig. 1. The fifth generation of LeNet DCNN architecture.

J. Li et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

2

3.2. Stochastic computing

In this paper, we adopt the bipolar encoding format, in order to
represent negative numbers in DCNNs. In the bipolar encoding format
of SC, number x is represented by a bit stream X, i.e.,
x P X= 2 (= 1) − 1. For instance, x = 0.4 can be represented by
X = 1101011101. The basic arithmetic operations in DCNN are multi-
plication, addition, and activation. With SC, these operations can be
implemented with extremely small circuits as follows.

3.2.1. Stochastic multiplication
In the SC domain, bipolar multiplication is performed by an XNOR

gate, as shown in Fig. 2. We denote the probabilities of 1 on the
input bit streams by P A() and P B(), and the output of the XNOR
gate is z P Z P A P B P A P B= 2 (= 1) − 1 = 2((= 1) (= 1) + (= 0) (= 0)) − 1

P A P B ab=(2 (= 1) − 1)(2 (= 1) − 1) = . Note that the input bit streams
are assumed to be suitably uncorrelated or independent in the above
calculations.

3.2.2. Stochastic addition
In the bipolar encoding format, the stochastic addition can be

performed by a multiplexer (MUX) [12] or an Approximate Parallel
Counter (APC) [20], as shown in Figs. 3 and 4, respectively. More
specifically, a MUX performs scaled addition by randomly selecting one
input i among n inputs with probability pi such that p∑ = 1i

n
i=1 . An

example of adding a and b using MUX with p p= = 50%1 2 is shown in
Fig. 3, which performs scaled addition in bipolar format, i.e.,
z P Z P A P B a b= 2· () − 1 = 2·(+) − 1 = ·((2· () − 1)+(2· () − 1)) = ·(+)P A P B()

2
()
2

1
2

1
2 .

The MUX has the drawback of losing n − 1 inputs information, since only
one bit is selected and the remaining n − 1 bits are ignored at a time.
Hence, the APC shown in Fig. 4 is proposed in [20] to improve the accuracy
by gathering all the input bit streams. Considering the large FEBs in large-
scale DCNNs, we adopt APC as the adder design so as to achieve sufficient
accuracy. Details will be discussed in Section 4.1.

3.2.3. Stochastic activation
As shown in Fig. 5, the hyperbolic tangent function (i.e., tanh(·)) is

implemented using a K-state FSM, in which half of the states generate
output 0 and the other half states generate 1. According to [28], for a
given bipolar stochastic number x, the result of the FSM design is a
stochastic approximation to the tanh function, i.e.,
Stanh K x tanh(,) = ()K x·

2 . As the output of an APC adder is in binary
format, this FSM design is re-designed by the authors in [20] as an up/
down counter to calculate the Btanh(·) for binary inputs. The accuracy
of the activation function is determined by state number K and input
stream length.

4. Proposed stochastic computing-based feature extraction
block

The FEB considered in this work is composed of inner product, max
pooling, and ReLU activation units, which is implemented by APC-based

inner product, hardware-oriented max pooling, and SC-based ReLU
activation, respectively.

4.1. APC-based inner product

Fig. 6 illustrates the APC-based hardware inner product design,
where the multiplication is calculated using XNOR gates and addition
is performed by an APC. We denote the number of bipolar inputs and
stochastic stream length by n and m, respectively. Accordingly, n
XNOR gates are used to generate n products of inputs (x s′i) and
weights (w s′i), and then the APC accumulates the sum of 1 s in each
column of the products. Note that the output of APC is a binary number
with more than 1-bit width.

For a basic FEB design using APC for inner product, MUX for
average pooling and the Btanh proposed in [20] for activation, the
accuracy, area, power, and energy performance with respect to the
input size are shown in Fig. 7 (a), (b), (c), and (d), respectively, under
the fixed bit stream length 1024.

As illustrated in Fig. 7(a), a very slow accuracy degradation is
observed as input size increases. However, the area, power, and energy
of the entire FEB increases near linearly as the input size grows, as
shown in Fig. 7(b),(c), and (d), respectively. The reason is as follows:

Fig. 2. Stochastic multiplication using bipolar encoding format.

A
B

Z
1,1,0,1,1,1,1,1 (6/8)

1,0,1,0,1,1,0,1 (2/8)
1,0,1,0,1,1,1,1 (4/8)

0,1,1,1,0,1,0,0 (4/8) S

0
1

Fig. 3. Multiplexer (MUX) for scaled addition.

Fig. 4. Approximate parallel counters (APC) for stochastic addition.

X

S0 S1 SK/2-1 SK/2 SK-2 SK-1

X
_

X X X X

X
_

X
_

X
_

X
_

Z=0 Z=1

tanh(x) Z

XX
_

2
K_X

Fig. 5. Stochastic hyperbolic tangent.

Fig. 6. APC-based inner product.

J. Li et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

3

With the efficient implementation of Btanh(·) function, the hardware of
Btanh(·) increases logarithmically as the input increases, since the input
width of Btanh(·) is log n2 . On the other hand, the number of XNOR
gates and the size of the APC grow linearly as the input size increases.
Hence, the inner product calculation part, i.e., XNOR array and APC, is
dominant in an APC-based neuron, and the area, power, and energy of
the entire APC-based neuron cell also increase at the same rate as the
inner product part when the input size increases.

Since the length of the stochastic bit stream is effective, we
investigate the accuracy of FEBs using different stream lengths under
different input sizes. As shown in Fig. 8, longer bit stream length
consistently outperforms lower bit stream length in terms of accuracy
in FEBs with different input sizes. However, designers should consider
the latency and energy overhead caused by long bit streams.

As mentioned in Section 3.2.2, MUX can perform addition as well.
Table 1 provides the performance between FEBs using APC-based inner
product and MUX-based inner product under a fixed bit stream length
equal to 1024 with different input sizes. Clearly, APC-based inner product is
more accurate, more power efficient but has more area and latency than
MUX-based inner product. As large-scale DCNN contains lots of FEBs with
more than 64 inputs, the large absolute error in FEBs using MUX inner
product will cause significant network performance degradation. Therefore,
in this work, we only consider APC for inner product calculation.

4.2. Pooling design

Average pooling calculates a mean of a small matrix and can be
implemented efficiently by a stack of MUXes. For four bit-streams
representing pixels in a 2 × 2 region in a feature map, we can use a 4-
to-1 MUX to calculate the mean of four bit-streams, as shown in Fig. 9
(a). Despite of the simple hardware implementation of average pooling,
we consider max pooling in this work, which is adopted in most state-
of-the-art DCNNs due to its better performance in practice. The
authors in [15] proposed a hardware-oriented max pooling design,
where the largest bit-stream in the most recent segment is selected as
the near-max output, as shown in Fig. 9(b). Different from the
hardware-oriented near-max pooling design in [15], we select the
maximum among the current bit as output instead of predicting based
on the most recent bits. Table 2 demonstrates the precision of the
improved hardware-oriented near-max pooling for representative
pooling units in DCNNs with up to 0.110 absolute error reduction
compared with [15]. For a LeNet-5 [29] DCNN using MNIST dataset
with 1024 bit stream, the network accuracy is improved by 0.11% using
the improved hardware-oriented near-max pooling compared with the
DCNN using max pooling in [15].

4.3. Activation design

The ReLU activation f x max x() = (0,) becomes the most popular
activation function in state-of-the-art DCNNs [5]. This necessitates the
design of SC-based ReLU block in order to accommodate the SC
technique in state-of-the-art large-scale DCNNs, such as AlexNet for
ImageNet applications. In this work, we adopt the SC-ReLU activation
developed in [13]. Unlike tanh that generates output in the range of
[− 1, 1], the ReLU always outputs non-negative number within [0, 1].
Accordingly, we use a shift register array to record the latest α bits of
the output stochastic bit streams and a counter to calculate their sum.
Hence, the SC-ReLU keeps tracking the last α output bits and predicts
the sign of the current value based on the sum calculated by the
counter. To be more specific, if the sum is less than half of the
maximum achievable sum, the current value is predicted to be negative.
Otherwise, it is predicted as positive (note that value 0 is half 1 s and
half 0 s in the bipolar format). As the output cannot be negative for

Fig. 7. Using the fixed bit stream length of 1024, the number of inputs versus (a) accuracy, (b) area, (c) power and (d) energy for an FEB using APC for inner product, MUX for average
pooling and the Btanh proposed in [20] for activation.

Fig. 8. The length of bit stream versus accuracy under different input numbers for an
FEB using APC inner product, MUX based average pooling and Btanh activation.

J. Li et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

4

ReLU, the SC-ReLU activation mitigates such errors by outputting 1 (as
compensation) whenever the predicted current value is negative.

5. Proposed normalization and dropout for SC-based DCNNs

5.1. Proposed stochastic normalization design

The overall stochastic normalization design is shown in Fig. 11. The
structure follows the Local Response Normalization (LRN) equation
presented in [1]. Given ax y

i
, denotes the neuron computation results

after applying kernel i at position x y(,) and ReLU nonlinearity
activation function, output bx y

i
, is calculated as

⎛
⎝⎜

⎞
⎠⎟

b
a

k α a

=

+ ∑ ()
x y
i x y

i

j max i n
min N i n

x y
j

β,
,

= (0, − /2)
(−1, + /2)

,
2

(1)

where the summation part of this equation counts all the adjacent
neuron outputs with bx y

i
, and N is the total number of neurons in this

layer. k, n, α and β are parameters that affect the overall accuracy of
network. The validation set used in the AlexNet is k n α= 2, = 5, = 1
and β = 0.75 [1].

The complex relationship in Eq.(1) is decoupled into three basic
operations: (i) square and summation, which calculates

k α a+ ∑ ()j max i n
min N i n

x y
j

= (0, − /2)
(−1, + /2)

,
2
, (ii) activation, that performs the (·)β opera-

tion, and (iii) division for the final output. Accordingly, the hardware
structure for stochastic normalization design is separated into three
units for the above-mentioned operations: (i) Square and Summation,
(ii) Activation and (iii) Division.

5.1.1. Square and summation
As show in Fig. 10, the stochastic square circuit consists of a D Flip-

Flop and an XNOR gate. Squaring a signal in stochastic process is
similar to multiplying 2 signals together. As mentioned in Section
3.2.1, multiplication is performed by XNOR gate. However, squaring a
signal by using an XNOR gate alone will always result in a 1 since the
two input signals in this case are correlated. To avoid this, a DFF is
applied in this circuit to force one of the input signals to arrive late
[28]. After delayed by one clock, the input signals become uncorrelated

and therefore an XNOR gate can be used to do multiplication. For the
summation part, we use an APC mentioned in Section 3.2.2 to add up
all the elements. Note that the output of the adder is in binary format.

5.1.2. Activation function for normalization
FSM can be used to build stochastic approximation of activation

functions. One challenge is that the max value that bipolar stochastic
number can reach is 1 but the denominator of Eq.(1) can easily be
greater than 1 in software normalization, e.g. k > 1 and β > 1. In order
to resolve the above issue, we reshape the ReLU function (mentioned in
Section 4.3) to imitate k αx(+)β. To be more specific, we change the
slope and intercept of SC-ReLU activation to make its shape close to
k αx(+)β by re-configuring the hardware component of ReLU. During
this process, the input range is set to x ∈ [0, 1] and the output is limited
to y ∈ [0, 1]. Here since x ∈ [0, 1], we set α to be a constant 1. The
imprecision of the activation operation can be compensated by jointly
optimizing the parameters of activation unit and the following division
unit, in order to make the final normalization result accurate.

Table 1
Comparison between APC-based FEB and MUX-based FEB using MUX for average pooling and tanh activation under 1024 bit stream.

FEB with APC Inner Product FEB with MUX Inner Product Ratio of APC/MUX (%)

Input size 16 32 64 16 32 64 16 32 64
Absolute error 0.15 0.16 0.17 0.29 0.56 0.91 51.94 27.56 18.34

Area (mμ 2) 209.9 417.6 543.2 110.7 175.3 279.8 189.7 238.2 194.1

Power (Wμ) 80.7 95.9 130.5 206.5 242.9 271.2 39.1 39.5 48.1

Energy (fJ) 177.4 383.7 548.1 110.0 169.1 238.9 161.3 226.9 229.5

Fig. 9. Pooling design in SC: (a) average pooling and (b) near-max pooling.

Table 2
Precision of the improved max pooling for an FEB with 16-bit input size under 1024 bit
stream.

DCNN Pooling Segment size Absolute
error

Absolute error reduction
over [15]

LeNet-5 [29] 4-to-1 16 0.3126 0.110
32 0.2609

AlexNet [1] 9-to-1 16 0.2143 0.095
32 0.2341

D Q
YA

CLK
Fig. 10. Stochastic square circuit using a DFF and an XNOR gate.

J. Li et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

5

5.1.3. Division
Our Algorithm 1 outlines the proposed SC-Division design where steps

7–11 correspond to an AND operation between divisor input and the
previous stochastic output. Only when both divisor input and previous
feedback stochastic output are 1, the saturated counter is allowed to
decrease. We have three different conditions to control the increment and
decrement of the saturated counter as shown in steps 13–21. Besides, we
also use a history shift register H α[0: − 1] in order to count the last α bits
of output stochastic bit stream. By using the sum of the α bits, which is

denoted by δ, we can predict the next stochastic output bit. Since the
output is a non-negative bipolar stochastic number, we need to eliminate
all possible negative error. To be more specific, if the sum δ is less than α

2
,

the current value is predicted to be negative. Since each negative value
raises an error, we mitigate such error by outputting a 1 instead of a 0.

Algorithm 1. Designated Division Algorithm for Normali-
zation(m x y α e, , , ,j j).

Table 3
Absolute error of FEBs with 4-to-1 pooling (commonly used in LeNet-5 [29]) under
different bit stream lengths and input sizes.

Input size Bit stream length

128 256 512 1024

16 0.154 0.152 0.152 0.151
32 0.115 0.112 0.110 0.112
64 0.086 0.084 0.084 0.080
128 0.071 0.066 0.064 0.066

SC-square

SC-square

SC-square

SC-square

SC-square

Adder

Neuron output-1

Neuron output-2

Neuron output-3

Neuron output-4

Neuron output-5

.................

.................

 Normalization
activation function

SC-Division

 Normalized
bipolar stochastic
 output for
neuron output-3

 Total n adjacent neurons

K, aplha, beta

Neuron output-3

Divisor

Divident

Fig. 11. The overall stochastic normalization design.

J. Li et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

6

5.2. Integrating dropout into SC-Based DCNN

DCNN can automatically learn complex functions directly from raw
data by extracting representations at multiple level of abstraction [5].
The deep architecture, together with advanced training algorithms, has
significantly enhanced the self-learning capacity of DCNN. However,
the learning process to determine the parameters in DCNNs becomes
computationally intensive due to the large number of layers and
parameters. The dropout technique is proposed to randomly omit
feature detectors with a certain probability p (usually p = 0.5) on each
training case [1]. After applying dropout, a hidden neuron cannot rely
on the particular other hidden neurons presence and has to learn more
robust features that are useful in conjunction with many different
random subsets of the other neurons. Accordingly, complex co-adap-
tion of neurons on the training data is prevented. Applying dropout can
also be viewed as training lots of different networks and averaging their
predictions. The trained weights need to be multiplied by p as an
approximation to taking the geometric mean of the prediction dis-
tributions produced by the dropout networks. The dropout technique is
applied in both training and inference. The training time is shortened
due to the simplified network for each input training data, whereas the
performance is improved as overfitting is mitigated. Note that there is

no hardware overhead for applying dropout since only learned weights
need to adjusted for the SC-based DCNN.

6. Experimental results

In this section, we present (i) performance evaluation of the SC
FEBs, (ii) performance evaluation of the proposed SC-LRN design, and
(iii) impact of SC-LRN and dropout on the overall DCNN performance.
The FEBs and DCNNs are synthesized in Synopsys Design Compiler
with the 45 nm Nangate Library [30] using Verilog.

6.1. Performance evaluation of the proposed FEB designs

For the overall FEB Designs, the accuracy depends on the bitstream
length and input size. In order to see the effects of the aforementioned
factors, we analyze the inaccuracy based on a wide range of input sizes
and bitstream lengths for FEBs using 4-to-1 pooling (used in LeNet-5
[29]) and 9-to-1 pooling (deployed in AlexNet [1]), as shown in Table 3
and Table 4, respectively. Noted that the inaccuracy here is calculated
compare to software results. One can observe from Tables 3 and 4 that
increasing the bit stream length tends to reduce the absolute error of
FEB under a given input size. Besides, with the improved near-max
pooling design, the FEB tends to be more accurate as input size
increases under a fixed bit stream length. This means that for larger
neurons deployed in large-scale DCNNs (i.e., FEB with larger input
size), the proposed FEB will be more accurate.

The corresponding hardware area, power and energy of proposed
FEB (with 4-to-1 pooling) are shown in Fig. 12 (a), (b) and (c),
respectively. As for the 9-to-1 pooling FEB, the hardware area, power
and energy of proposed FEB are shown in Fig. 13 (a), (b) and (c),
respectively. Despite of the reduced absolute error, the area, power,
and energy for both FEBs all increase as the input size increases. Note
that max pooling is placed before ReLU in the FEB with 4-to-1 pooling,

Fig. 12. Input size versus (a) total power, (b) area, and (c) total energy for the FEB design (4-to-1 pooling).

Fig. 13. Input size versus (a) total power, (b) area, and (c) total energy for the FEB design (9-to-1 pooling).

Table 4
Absolute error of FEBs with 9-to-1 pooling (commonly used in AlexNet [1]) under
different bit stream lengths and input sizes.

Input size Bit stream length

128 256 512 1024

16 0.120 0.121 0.117 0.119
32 0.073 0.064 0.065 0.065
64 0.051 0.037 0.031 0.033
128 0.042 0.026 0.021 0.018

J. Li et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

7

whereas pooling in after ReLU in the FEB with 9-to-1 pooling. This
order of pooling and ReLU operation follows the software implementa-
tion in the original LeNet-5 [29] and AlexNet [1].

6.2. Performance evaluation of the proposed SC-LRN designs

As for SC-LRN, several parameters may result in accuracy degrada-
tion, i.e., n, β, k and bit stream length. The set of parameters used in
software cannot be directly applied here due to the imprecision induced
by the stochastic components. Hence, we need to run experiments to
find the best setting of these parameters in the proposed SC-LRN.

We set up the first experiment between the inaccuracy of SC-LRN
under different bit stream length and number of adjacent neurons, and
the results are illustrated in Fig. 14. It is obviously that, as n increase,
there is a continuous accuracy decrement regardless of bit stream
length. In addition, longer bit stream length yields higher accuracy, and
this indicates that the precision can be leveraged by adjusting the bit
stream length without hardware modification.

In the second experiment, we evaluate the effect of β and k to the

overall accuracy of SC-LRN under a wide range of β ∈ [0, 2] and
k ∈ [1, 12], and the results are provided in Fig. 15. Due to the fact that
k αx(+)β is not a monotone function, we need to discuss the inaccuracy
based on the range of k and β. When β > 0.75, increasing k value will
result in imprecision. If β < 0.25, the accuracy will increase as k
increase. For β0.25 ≤ ≤ 0.75, the accuracy of SC-LRN is barely affected
by k.

In the third experiment, we further compare the proposed SC-based
LRN with the binary ASIC hardware LRN design. The parameter values
we choose for the tests are as follow: n = 5, k = 2 and β = 0.75. Clearly,
the number of bits in fixed-point number affect both the hardware cost
and accuracy. To make the comparison fair, we adopt minimum fixed
point (8 bit) that yields a DCNN network accuracy that is almost
identical to the software DCNN. Table 5 shows the performance
comparison between binary-LRN and SC-LRN. Compared with binary
ASIC LRN, the proposed SC-LRN achieves up to 5×, 9×, and 6×
improvement in terms of power, energy and area, respectively,
indicating significant hardware savings with only a little accuracy
deficit.

6.3. Impact of SC-LRN and dropout on the overall DCNN
performance

In this section, we re-train AlexNet [1] models on ImageNet
challenge [31] with four different configurations, (1) Original AlexNet
(with both LRN and Dropout), (2) AlexNet without Dropout, (3)
AlexNet without LRN, and (4) AlexNet without Dropout and LRN.
Please note we do not pre-process the ImageNet data with data
augmentation as [1] suggested and we scale the input image pixel
values to [0,1] from [0,255] so that the inputs fed into the network
range from [−1,1] after processing. Different software-based model
accuracies on the test set are achieved. Then we evaluate the SC-based
inference accuracy with SC-based components (including proposed
LRN and Dropout) given bit-stream length as 1024 to show the
application-level degradation from trained models.

As shown in Table 6, we observe that with the proposed SC-LRN
and dropout, the hardware inference accuracy can achieve top-1 and
top-5 accuracy as high as 57.63% and 81.35%, respectively. Please note
that top-1 accuracy counts when the predicted label with the highest
probability is exactly the same as the ground-truth while top-5 accuracy
counts when the ground-truth falls in the first five predicted labels with
highest probabilities. The top-1 and top-5 accuracy degradations of
hardware based designs are about 1%, which is a small degradation
from the software DCNNs. Furthermore, we can see from No. 2 and No.
4 that the network degrades by only 0.1–0.2% with SC-LRN; from No.
3 and No. 4, Dropout nearly shows no degradation compared with
software trained model accuracies. Finally, the No. 1 configuration with
the proposed SC-LRN and Dropout achieves 3.26% top-1 accuracy
improvement and 3.05% top-5 accuracy improvement compared with
the No. 4 configuration without these two essential techniques,
demonstrating the effectiveness of proposed normalization and drop-
out designs.

Table 5
SC-LRN versus Binary-LRN hardware cost.

Type Area(µm2) Power(µW) Energy(fJ) Delay(ns) Inaccuracy

SC-LRN 290.2 64.6 77.5 1.2 0.06
Binary-LRN 1786.7 333.5 700.4 2.1 0.04

Table 6
AlexNet accuracy results.

No. Configuration Model Accuracy Inference Accuracy

Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

1 Original with LRN&
Dropout [1]

57.63 81.35 56.49 80.47

2 w/o Dropout 55.83 79.94 54.75 78.86
3 w/o LRN 55.97 80.53 54.94 79.73
4 w/o Dropout & LRN 54.25 78.37 53.23 77.42

Fig. 14. Number of adjacent neurons versus absolute inaccuracy under different bit
stream lengths for proposed LRN.

Fig. 15. Different K values versus absolute inaccuracy under different β for the proposed

LRN.

J. Li et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

8

7. Conclusion

We presented hardware implementations of normalization and
dropout for SC-based DCNNs. First, FEBs in DCNNs were built with
APC for inner product, an improved near-max pooling block for
pooling, and SC-ReLU for activation. Then, a novel SC-based LRN
design was proposed, comprising square and summation unit, activa-
tion, and division units. The dropout technique was integrated in the
training phase and the corresponding weights were adjusted for the
hardware implementation. Experimental results on AlexNet validated
the effectiveness of the proposed LRN and dropout design.

References

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Adv. Neural Inf. Process. Syst. (2012) 1097–1105.

[2] B. Hu, Z. Lu, H. Li, Q. Chen, Convolutional neural network architectures for
matching natural language sentences, Adv. Neural Inf. Process. Syst. (2014)
2042–2050.

[3] K. Simonyan, A. Zisserman, Two-stream convolutional networks for action
recognition in videos, Adv. Neural Inf. Process. Syst. (2014) 568–576.

[4] T.N. Sainath, A.R. Mohamed, B. Kingsbury, B. Ramabhadran, Deep convolutional
neural networks for lvcsr, in: Proceedings of the 2013 IEEE international
conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2013, pp.
8614–8618.

[5] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444.
[6] Y. Xue, J. Li, S. Nazarian, P. Bogdan, Fundamental challenges toward making the

iot a reachable reality: a model-centric investigation, ACM Trans. Des. Autom.
Electron. Syst. (TODAES) 22 (3) (2017) 53.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
T. Darrell, Caffe: convolutional architecture for fast feature embedding,
in: Proceedings of the 22nd ACM international conference on Multimedia, ACM,
2014, pp. 675–678.

[8] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G.
Desjardins, D. Warde-Farley, I. Goodfellow, A. Bergeron, et al., Theano: deep
learning on gpus with python, in: NIPS 2011, BigLearning Workshop, Granada,
Spain, vol. 3, Citeseer, 2011.

[9] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimizing fpga-based
accelerator design for deep convolutional neural networks, in: Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
ACM, 2015, pp. 161–170.

[10] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun,
et al., Dadiannao: a machine-learning supercomputer, in: Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture, IEEE
Computer Society, 2014, pp. 609–622.

[11] Y.-H. Chen, T. Krishna, J. S. Emer, V. Sze, Eyeriss: An Energy-efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks, IEEE Journal
of Solid-state Circuits.

[12] J. Li, A. Ren, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, Towards acceleration of deep
convolutional neural networks using stochastic computing, in: Proceedings of the
22nd Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE,
2017.

[13] J. Li, Z. Yuan, Z. Li, C. Ding, A. Ren, Q. Qiu, J. Draper, Y. Wang, HaRdware-driven
Nonlinear Activation for Stochastic Computing Based Deep Convolutional Neural
Networks, Arxiv Preprint http://arXiv.org/abs/arXiv:1703.04135arXiv:1703.
04135.

[14] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, B. Yuan, Dscnn: Hardware-oriented

optimization for stochastic computing based deep convolutional neural networks,
in: Proceedings of the IEEE 34th International Conference on Computer Design
(ICCD), 2016, pp. 678–681.

[15] A. Ren, J. Li, Z. Li, C. Ding, X. Qian, Q. Qiu, B. Yuan, Y. Wang, Sc-dcnn: Highly-
scalable deep convolutional neural network using stochastic computing,
in: Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ACM, 2017, pp. 405–
418.

[16] Z. Li, A. Ren, J. Li, Q. Qiu, B. Yuan, J. Draper, Y. Wang, Structural design
optimization for deep convolutional neural networks using stochastic computing,
in: Proccedings of the 2017 Design, Automation & Test in Europe Conference &
Exhibition (DATE), IEEE, 2017, pp. 250–253.

[17] Z. Yuan, J. Li, Z. Li, C. Ding, A. Ren, B. Yuan, Q. Qiu, J. Draper, Y. Wang, Softmax
regression design for stochastic computing based deep convolutional neural net-
works, in: Proceedings of the on Great Lakes Symposium on VLSI 2017, ACM,
2017, pp. 467–470.

[18] Y. Ji, F. Ran, C. Ma, D. J. Lilja, A hardware implementation of a radial basis
function neural network using stochastic logic, in: Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, EDA Consortium, 2015, pp.
880–883.

[19] J. Li, J. Draper, Accelerated soft-error-rate (ser) estimation for combinational and
sequential circuits, ACM Trans. Des. Autom. Electron. Syst. (TODAES) 22 (3)
(2017) 57.

[20] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, K. Choi, Dynamic energy-accuracy trade-off
using stochastic computing in deep neural networks, in: Proceedings of the 53rd
Annual Design Automation Conference, ACM, 2016, p. 124.

[21] J. Li, J. Draper, Joint soft-error-rate (ser) estimation for combinational logic and
sequential elements, in: Proceedings of the 2016 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), IEEE, 2016, pp. 737–742.

[22] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov,
Improving neural networks by preventing co-adaptation of feature detectors, arXiv
preprint 〈arXiv:http://arXiv.org/abs/arXiv:1207.0580arXiv:1207.0580〉.

[23] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout
a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15
(1) (2014) 1929–1958.

[24] M. Motamedi, P. Gysel, V. Akella, S. Ghiasi, Design space exploration of fpga-based
deep convolutional neural networks, in: Proceedings of the 21st Asia and South
Pacific Design Automation Conference (ASP-DAC), IEEE, 2016, pp. 575–580.

[25] A. Rahman, J. Lee, K. Choi, Efficient fpga acceleration of convolutional neural
networks using logical-3d compute array, in: Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2016, pp.
1393–1398.

[26] C. Zhang, Z. Fang, P. Zhou, P. Pan, J. Cong, Caffeine: towards uniformed
representation and acceleration for deep convolutional neural networks,
in: Proceedings of the 35th International Conference on Computer-Aided Design,
ACM, 2016, p. 12.

[27] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M.A. Horowitz, W.J. Dally, Eie: efficient
inference engine on compressed deep neural network, in: Proceedings of the 43rd
International Symposium on Computer Architecture, IEEE Press, 2016, pp. 243–
254.

[28] B.D. Brown, H.C. Card, Stochastic neural computation. I. Computational elements,
IEEE Trans. Comput. 50 (9) (2001) 891–905.

[29] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker, I.
Guyon, U. Muller, E. Sackinger, et al., Comparison of learning algorithms for
handwritten digit recognition, in: Proceedings of the International Conference On
Artificial Neural Networks, Networks, vol. 60, Perth, Australia, 1995, pp. 53–60.

[30] Nangate 45 nm Open Library, Nangate Inc., 2009.[link] URL 〈http://www.nangate.
com/〉.

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale
hierarchical image database, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2009, IEEE, 2009, pp. 248–255.

J. Li et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

9

http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref1
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref1
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref2
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref2
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref2
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref3
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref3
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref4
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref5
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref5
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref5
http://www.elsevier.com/xml/linking-roles/preprint
http://arXiv:1703.04135
http://arXiv:1703.04135
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref6
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref6
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref6
http://www.elsevier.com/xml/linking-roles/preprint
http://arXiv:1207.0580
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref7
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref7
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref7
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref8
http://refhub.elsevier.com/S0167-9260(17)30232-8/sbref8
http://www.nangate.com/
http://www.nangate.com/

	Normalization and dropout for stochastic computing-based deep convolutional neural networks
	Introduction
	Prior work
	FPGA approach
	Conventional ASIC approach
	Stochastic computing approach

	DCNN architecture overview
	DCNN architecture
	Stochastic computing
	Stochastic multiplication
	Stochastic addition
	Stochastic activation

	Proposed stochastic computing-based feature extraction block
	APC-based inner product
	Pooling design
	Activation design

	Proposed normalization and dropout for SC-based DCNNs
	Proposed stochastic normalization design
	Square and summation
	Activation function for normalization
	Division

	Integrating dropout into SC-Based DCNN

	Experimental results
	Performance evaluation of the proposed FEB designs
	Performance evaluation of the proposed SC-LRN designs
	Impact of SC-LRN and dropout on the overall DCNN performance

	Conclusion
	References

