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ABSTRACT
Recently, Deep Convolutional Neural Networks (DCNNs)
have made tremendous advances, achieving close to or even
better accuracy than human-level perception in various tasks.
Stochastic Computing (SC), as an alternate to the conven-
tional binary computing paradigm, has the potential to en-
able massively parallel and highly scalable hardware imple-
mentations of DCNNs. In this paper, we design and optimize
the SC based Softmax Regression function. Experiment re-
sults show that compared with a binary SR, the proposed
SC-SR under longer bit stream can reach the same level
of accuracy with the improvement of 295X, 62X, 2617X in
terms of power, area and energy, respectively. Binary SR
is suggested for future DCNNs with short bit stream length
input whereas SC-SR is recommended for longer bit stream.

1. INTRODUCTION
Nowadays, Deep Convolutional Neural Network (DCNN)

is the dominant approach for classification and detection
tasks for images, video, speech as well as audio [1]. DCNNs
implement the backpropagation algorithm, which points out
the parameters that should be updated. These parameters
are used to compute the representation in each layer from
the output of the previous layer. Clearly, the huge amount
of computation power of DCNNs prevents their widespread
applications in wearable and Internet of Things (IoT) de-
vices [2, 3, 4].

Compared to the studies using conventional binary arith-
metic computing, Stochastic Computing (SC) is a fascinat-
ing solution to the above issues due to its superior perfor-
mance in terms of area and power consumption as well as
high tolerance to soft errors [5, 6, 7]. SC represents a number
by the probability of 1s in a random bit stream. Many com-
plex arithmetic operations can be implemented with very
simple hardware logic in the SC framework, which allevi-
ates the extensive computation complexity [6, 8]. On this
account, a mass of research efforts have been put into de-
signing neural networks using SC [2, 6, 8, 9]. Both of the
recent designs [2, 9] successfully implement the SC-based
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neuron cells and the layerwise structure of neural networks.
Nevertheless, there is no existing design flow for Softmax
Regression (SR) function after the fully-connected layer for
DCNNs. SR is the generalization of logistic regression func-
tion when multiple categories need to be classified. It is one
of the most significant part in deep learning networks due
to the fact that it directly affects the final result.

In this paper, we first propose a SC-based Softmax Re-
gression function block. The design parameters are opti-
mized in order to achieve best performance for accuracy.
After that we conduct a comprehensive comparison between
binary ASIC SR function and SC-based SR function under
different input sizes and stochastic bit stream lengths. More-
over, we further construct and investigate the network per-
formances between the conventional binary SR design and
the proposed SC-based SR design in a practical DCNN.

2. DCNN ARCHITECTURE AND SOFTMAX
REGRESSION FUNCTION

2.1 Deep Convolutional Neural Network
A general DCNN architecture consists of a stack of con-

volutional layers, pooling layers, and fully connected layers.
A convolutional layer is associated with a set of learnable
filters (or kernels), and common patterns in local regions of
inputs are extracted by convolving this kind of filter over
the inputs [10]. A feature map is built to store the convo-
lution result. After that, a subsampling step is applied to
aggregate statistics of these features in the pooling layer for
the sake of reducing the dimensions of data and alleviating
over-fitting issues. In addition, a nonlinear activation func-
tion is applied here to generate the output of the layer [11].
After several convolutional and pooling layers, the high-level
reasoning fully connected layer is applied in order to further
aggregate the local information learned in previous layers.
After that, a Softmax Regression function should be applied
for classification.

2.2 Stochastic Computing (SC)
Stochastic computing is a technology that represents a

numeric value x ∈ [0, 1] by counting the number of 1s in
a bit stream, e.g., the value of a 4-bit sequence “0100” is
x = P (X = 1) = 0.25. In addition to this unipolar format,
another widely used format is bipolar format. In this coding
scheme, a value x ∈ [−1, 1] is processed by P (X = 1) =
x+1
2

. With SC, addition, multiplication, and division can be
implemented using significantly smaller circuits, compared



to the conventional binary arithmetic [6] as shown in Figure
1 (a), (b) and (c).

To be more specific, multiplications are executed using
XNOR gates in bipolar format. The stochastic number of
C is calculated as c = 2P (C)− 1 = 4P (A)P (B)− 2P (A)−
2P (B) + 1 = (2P (A)− 1)(2P (B)− 1) = a× b. Multiplexers
(MUXes) are used to processed addition in SC [6]. In order
to achieve a better accuracy with little deficit in terms of
power, area and energy, we adopt the Approximate Parallel
Counter (APC) proposed in [12]

Division can only be accomplished in an approximate form
in the stochastic number representation schemes [6]. Given
input X and Y, output Q = Y

X
is represented as

Q = −α(XQ− Y ) (1)

where α is a positive parameter which controls the rate
change for the counter state. A SC-based unipolar divi-
sion circuit is implemented by adopting the gradient descent
technique with a saturated counter as an integrator. Divi-
sion is implemented by incrementing the counter when Y is
1 and decrementing the counter when both X and Q are 1s.

2.3 Softmax Regression (SR) Function
Softmax Regression (SR) is a generalization of logistic re-

gression for the sake of classifying multiple mutually exclu-
sive classes. SR is placed after fully connected layer in order
to assign probabilities to an object being one of several dif-
ferent things. SR is composed of two parts, i.e., summation
and softmax. Summation is used to add up the pixel in-
tensities. It is quite similar to normal neuron cell operation
except the activation function. Given input x, output Z in
class i is calculated as

Zi =
∑
j

Wi,jxj + bi (2)

where Wi,j is the weight and bi stands for extra parameter
called bias of class i. These parameters are adjusted dur-
ing the backpropagation process. The subsequent softmax
step acts like an activation function which changes the linear
function into different nonlinear shapes. In this scenario, the
summation result is shaping into a probability distribution
function over different classes. Given input x, output P for
class i is defined as

Pi =
exp(xi)∑
j exp(xj)

(3)

The exponential function means little increase in input xi
will result in dramatically growth in result exp(xi) and in-
deed increase the probability in class i. This enables SR to
distinguish among different categories and select the most
similar result.
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Figure 1: Stochastic computing for neuron design:
(a) XNOR gate for bipolar multiplication, (b) binary
adder, and (c) unipolar division.
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Figure 2: Structure for SC based Softmax Regres-
sion function.

Table 1: Naming Conventions in a SC based SR
m the length of bit stream
q number of classes

n
input size: the number of input bit streams (or the number of
input and weight pairs) in each convolution block

xji
the i-th input bit of the j-th convolution block(
i ∈ [0, n− 1], j ∈ [0, q − 1]

)
wji

the i-th weight bit of the j-th convolution block(
i ∈ [0, n− 1], j ∈ [0, q − 1]

)
tj

the sum calculated by the j-th convolution block,
which is a log2n-bit binary number

3. SC-SOFTMAX REGRESSION FUNCTION
DESIGN

3.1 Overall Structure
The proposed structure of SC-SR is shown in Figure 2,

which is composed of SC-exponential, SC-normalization, SC-
comparator and counter blocks. Bipolar encoding scheme is
employed. The proposed SC-SR design adopt XNOR gates
and APCs for addition and multiplication (same as convo-
lution), respectively. Note that the outputs of APCs are
binary. In addition, SC-exponential accomplishes a binary
input to unipolar stochastic bit stream conversion. After
that, the SC-normalization step converts the unipolar out-
put from exponential block to bipolar stochastic bit stream.
For the convenience of discussions, we follow the naming
conventions in Table I.

3.2 SC-exponential
The author in [2] use a saturated up/down counter to im-

plement a binary hyperbolic tangent function. We adopt the
saturated counter idea and implant in our design. Algorithm
1 presents the proposed SC-exponential function where step
8-11 correspond to convolution using XNOR gates and APCs
and step 12-16 are the adopted saturated counter. The
counted binary number generated by APC is taken by the
saturated up/down counter which represents the amount of
increase and decrease. Besides, we also use a history shift
register H[0:α-1] in order to count the last α bits of output
stochastic bit stream. By using the sum of the α bits, which
is denoted by δ, we can predict the next stochastic output
bit. To be more specific, if the sum of last α bits falls in range
of [0.3α, 0.4α], the output is predicted as 0 because the pos-
sibility of this value being large is small. On the other hand,
if it falls into [0.6α, 0.7α], this output is predicted to be a 1.
Another reason for this is that the normalization block in our



Figure 3: Input size versus (a) total power, (b) area, and (c) total energy for the proposed SC-SR.

proposed design is created by adopting the unipolar division
method in [6]. Note that the outputs of our SC-exponential
block are in unipolar encoding scheme.

Algorithm 1: Designated Softmax Regression SC-
Exponential (m,n, xji , w

j
i , α, e)

input : q indicates number of classes
input : α is the number of registers in the temporary array
input : e is internal FSM state number
output: zk is the k-th stochastic output bit for the SC-exponential

1 Smax ← e − 1 ; /* max state */

2 S ← e
2

; /* current state */

3 r ← α − 1 ; /* r is an iterator */
4 H[0 : α − 1] ← 0 ; /* initialize history array */

5 δ ← α
2

; /* initialize shadow counter */

6 for k ← 1 to m do
7 for i ← 1 to n do

8 p
j
i

= x
j
i
� wj

i
; /* XNOR multiplication */

9 end

10 tj = 2 ·
∑n
i=0 p

j
i
− n ; /* APC addition */

11 S ← S + tj
12 if S < 0 then /* saturated counter */
13 S ← 0
14 else if S > Smax then
15 S ← Smax
16 end

17 if S < n
4

then /* output logic */

18 if 0.4 × α > δ > 0.3 × α then
19 zk ← 0

20 else if S > S
2

then

21 zk ← 1

22 else
23 zk ← 0

24 end

25 else
26 if 0.7 × α > δ > 0.6 × α then
27 zk ← 1

28 else if S > S
2

then

29 zk ← 1

30 else
31 zk ← 0

32 end

33 end

34 end
35 while r ≥ 1 do
36 H[r] ← H[r − 1]; /* update the history array */
37 r ← r − 1

38 end
39 H[0] ← zk

40 δ ←
∑α−1
r=0 H[r]; /* update the shadow counter */

41 r ← α − 1

3.3 SC-normalization
Since the output from previous SC-exponential block is in

unipolar encoding format. In Algorithm 2, We adopt the
unipolar division circuit from [6]. Step5-17 correspond to
the summation of all the previous outputs and determine
the divisor value by using an AND gate. We create desig-
nated SC-exponential and SC-normalization for each class.
Therefore, the dividend is just the output of previous SC-
exponential block for corresponding class. We have 4 differ-
ent conditions to control the amount of increase and decrease
in the implanted saturated counter as shown in step19-30.
Since the output is a non-negative bipolar stochastic num-
ber, a history shift register H[0:α-1] is also implemented in
this algorithm in order to eliminate negative value.

Table 2: Network Accuracy
input size bit stream validation(%) test(%)

software
256 - 99.03 99.10
512 - 98.96 99.04

binary
256 - 99.04 99.10
512 - 98.96 99.07

SC

256

16 59.04 59.75
32 78.26 77.23
64 98.80 98.91

256 99.02 99.08
1024 99.00 99.14

512

16 19.72 19.53
32 98.85 99.00
64 98.04 98.29

256 98.93 99.09
1024 98.78 99.06

4. EXPERIMENTAL RESULTS

4.1 Performance analysis for SC-SR
For SC-SR, the accuracy depends on the bit stream length

m and input size n. Hence, in order to consider the afore-
mentioned factors, we create and analyze the inaccuracy of
SC-SR using LeNet-5 [13] classification method based on the
wide range of input size and bit stream length as shown in
Figure 4. The corresponding hardware costs of proposed
SC-SR are shown in Figure 3 (a), (b) and (c). The SRs
and DCNNs are synthesized in Synopsys Design Compiler
with the 45nm Nangate Library [14] using Verilog. Note
that the inaccuracy here is calculated by comparing with
the software results. It is obviously that SC-SR will be less
accurate provided that the input size increases and it will
be precision if the bit stream length increases. we further
test the proposed design under different number of classes
using AlexNet [15] classification method, the classification
accuracies for different input size and bit stream length are
all 100 % which means there is no accuracy degradation.

4.2 Comparison with Binary ASIC SR
We further compare the performance of the proposed SC-

based Softmax Regresion block with the binary ASIC hard-
ware SR. The input is set to 800 and the number of classes

Figure 4: Input size versus absolute inaccuracy un-
der different bit stream lengths for SC-SR.



Algorithm 2: Designated Softmax Regression SC-
Normalization (m,xj , α, e)
input : f is rate change for the FSM
input : xj is the input bit of the j-th exponential block

input : e is number of different classes

output: z
j
k

is the k-th stochastic output bit of class j for the

SC-normalization
1 Algorithm 1 step 1-4
2 δ ← 0 ; /* initialize shadow counter */
3 for k ← 1 to m do
4 p =

∑e
j=1 xj ; /* summation of output bits from exponential blocks */

5 if p > e
2

then /* nomralize summation result */

6 h ← 1
7 else
8 h ← 0
9 end

10 if S > e
2

then /* Divisor */

11 X ← h
12 else
13 X ← 0
14 end
15 Y = xj ; /* Dividend */

16 if X == 1&&Y == 1 then /* Next state logic */
17 S = S − p + f × e
18 end
19 if X == 0&&Y == 1 then
20 S = S + f × e
21 end
22 if X == 1&&Y == 0 then
23 S = S − p
24 end
25 if X == 0&&Y == 0 then
26 S = S
27 end
28 if S < 0 then /* saturated counter */
29 S ← 0
30 else if S > Smax then
31 S ← Smax
32 end

33 if δ < α
2

then /* compensate for negative value */

34 z
j
k
← 1

35 else
36 if 0.7 × α > δ > 0.6 × α then /* output logic */

37 z
j
k
← 1

38 else if S > e
2

then

39 z
j
k
← 1

40 else

41 z
j
k
← 0

42 end

43 end

44 end
45 Algorithm 1 step 35-41

Table 3: Performance Comparison with 8 Bit Fixed
Point Binary Design when n = 800 and q = 10

SC-800bits binary 800bits improvement
dynamic power(uW) 10981 3503800 319X
leakage power(uW) 1078 58986 55X
total power(uW) 12058 3562100 295X

area(um2) 50083 3094968 62X
delay(ns) 5.05 44.74 8.8X

energy(pJ) 61 159368 2617X

is set to 10. The binary exponential function is built us-
ing LUTs, whereas the normalization block is built using
divider. Clearly, the number of bits in fixed-point numbers
affect both the hardware cost and accuracy. To make the
comparison fair, we adopt minimum fixed point (8 bit) that
yields a DCNN network accuracy that is almost identical to
the software DCNN (with< 0.0003 difference in network test
error). Table 3 shows the performance comparison between
binary SR and SC-SR. Compared with binary ASIC SR, the
proposed SC-SR achieves up to 295X, 62X, and 2617X im-
provement in terms of power, energy and area, respectively,
indicating significant hardware savings.

4.3 DCNN Accuracy Evaluation
To evaluate the network accuracy, we construct a LeNet-

5 DCNN, which is a widely-used DCNN structure, by re-
placing the software Softmax function with the proposed
SC-SR as well as binary SR. We evaluate two SR configu-
rations, i.e., the LeNet-5 with configurations of 784-11520-
2880-3200-800-256-10 and 784-11520-2880-3200-800-512-10.
The DCNNs are evaluated using the MNIST handwritten
digit image dataset [16]. we apply the same amount of

training time in software for these two DCNN architectures.
Table 2 summarizes the accuracy of DCNNs using SC-SR
and binary SR. One can observe that with a long input bit
stream length (m >= 64), SC-SR reaches the same precision
level as binary SR and software SR. As we discuss above,
compared to binary SR, SC-SR has better performance in
terms of power, area and energy. Hence, binary SR is sug-
gested for future DCNNs when bit stream length is short
(e.g., m = 64), whereas SC-SR is recommended for long bit
stream length DCNNs.

5. CONCLUSION
In this paper, we present a novel SC based Softmax Re-

gresion function design. We test the proposed SC-SR under
different input size and bit stream length as well as out-
put classes. In addition, we implant the proposed design
into LeNet-5 DCNN. Experimental results on the MNIST
dataset demonstrate that compared to the binary SR, the
proposed SC-SR under long bit stream length input were
able to significantly reduce the area, power and energy foot-
print with nearly no accuracy degradation.
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