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Abstract—Deep Learning, as an important branch of machine 
learning and neural network, is playing an increasingly 
important role in a number of fields like computer vision, natural 
language processing, etc. However, large-scale deep learning 
systems mainly operate in high-performance server clusters, thus 
restricting the application extensions to personal or mobile 
devices. The solution proposed in this paper is taking advantage 
of the fantastic features of stochastic computing methods. 
Stochastic computing is a type of data representation and 
processing technique, which uses a binary bit stream to represent 
a probability number (by counting the number of ones in this bit 
stream). In the stochastic computing area, some key arithmetic 
operations such as additions or multiplications can be 
implemented with very simple components like AND gates or 
multiplexers, respectively. Thus it provides an immense design 
space for integrating a large amount of neurons and enabling 
fully parallel and scalable hardware implementations of large-
scale deep learning systems. In this paper, we present a 
reconfigurable large-scale deep learning system based on 
stochastic computing technologies, including the design of the 
neuron, the convolution function, the back-propagation function 
and some other basic operations. And the network-on-chip 
technique is also proposed in this paper to achieve the goal of 
implementing a large-scale hardware system. Our experiments 
validate the functionality of reconfigurable deep learning systems 
using stochastic computing, and demonstrate that when the bit 
streams are set to be 8192 bits, classification of MNIST digits by 
stochastic computing can perform as low error rate as that by 
normal arithmetic operations. 

Keywords—Stochastic computing; deep learning; neuron; 
reconfigurable; large-scale. 

I. INTRODUCTION 
In recent years, the machine learning technology lends the 

emerging of autonomous systems, such as unmanned vehicles, 
robotics, and cognitive wearable devices. Deep Learning, as a 
new branch of machine learning research, is representation 
learning based and capable of overcoming the limitations of 
processing natural data in their raw form, which are faced by 
the conventional machine learning techniques. Recently, deep 
learning has been proven to be an effective technique that is 
capable of handling unstructured data for both supervised and 
unsupervised learning [1]-[3]. The deep layered structure 
significantly improves learning performance, however, also 
increases memory and computation complexity.  

Nowadays, large-scale deep neural networks mainly 
operate in high-performance server clusters, GPU or FPGA 

clusters [4]-[11], and have attracted many research attentions 
on enhancing parallelism and scalability, and reducing power 
consumptions as well as synchronization overheads [4][6][10]. 
However, the computing requirement at server or GPU cluster 
level implies high power/energy consumptions and prohibits 
the wide application of deep learning systems in personal 
systems or mobile devices. One promising method to 
overcome this shortcoming is designing specific hardware-
based deep learning systems, in order to exploit the maximum 
degree of parallelism and achieve significant reduction in 
power/energy.  

IBM TrueNorth neuro-synaptic processor [15], although in 
essence not for deep learning applications but for spiking 
neural networks, is a breakthrough effort in this direction. 
TrueNorth has integrated 4,096 physical neurons, each 
accommodating up to 256 virtual neurons in the time-
multiplexed manner. This time-multiplexing operating manner 
has restricted the parallelism degree and performance. 
Moreover, a desirable hardware-based deep learning system 
should be able to possess online training/learning capability 
and re-configurability for different applications, whose 
properties are typically missing in state-of-the-art hardware 
implementations of neural networks [12]-[15]. The challenges 
to design highly scalable and parallel hardware deep learning 
systems that also provide online learning capability necessitate 
the investigation on novel computing paradigm spanning 
hardware, algorithm, and application. 

Stochastic Computing (SC) [16][17], as a unique data 
representation and processing technique, has the potential to 
enable the design of fully parallel and scalable hardware 
implementations of large-scale deep learning systems, due to 
the following reasons: First, many complex arithmetic 
operations can be implemented with very simple hardware 
logic in stochastic computing framework [16], which offers an 
immense design space for (i) neuron integrations due to the 
significantly reduced area per neuron and (ii) performance 
optimizations with respect to resiliency, power/energy, and 
speed by trading off the abundant area budget. Second, 
stochastic computing has inherently strong fault tolerance 
against transient and soft errors [18]-[20], because it processes 
data in the form of bit streams that are interpreted as 
probabilities in contrast to the traditional computing that 
operates on the positional representation of data. Based on 
these encouraging characteristics, stochastic computing can 
potentially trigger a revolutionary reshaping of hardware 
design of large-scale deep learning systems with orders-of-
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magnitude improvements in scalability, performance, 
power/energy efficiency, and resiliency. 

In this paper, we investigate highly scalable hardware-
based deep learning systems using stochastic computing. Our 
target is to develop a universal platform of hardware deep 
learning systems for various applications, which supports 
online learning capability and re-configurability for various 
types of neural networks such as deep belief network (DBN) 
or convolutional neural network (ConvNN) and for different 
applications. The target platform resembles FPFA for digital 
circuits and systems. In order to achieve this goal as well as 
high performance, low energy/power consumption, high 
scalability and resiliency, we propose novel hardware design 
of neurons using stochastic computing. The major computing 
tasks, e.g., inference and learning, of the neuron are performed 
in the stochastic computing domain based on our novel 
designs of stochastic computing-based inner product 
calculation. The proposed neuron achieves online learning 
capability and re-configurability, both for different types of 
neural networks such as DBN and ConvNN, and for different 
applications. It achieves extremely small hardware footprint 
and power/energy consumptions. At the network-on-chip 
(NoC) level, which coordinates neuron communications, we 
propose high-efficient, low-hardware cost, and low-power 
NoC structure connecting and coordinating a large number of 
stochastic computing-based neurons. 

Extensive experimental results have been conducted on 
both the hardware design and the testing results on various 
deep learning benchmarks, e.g., classifying MNIST digits by 
ConvNN with different lengths of bit streams. Experimental 
results demonstrate that the error rate can be restricted around 
1.54% which is the base line performance of trained ConvNN 
model when the lengths of bit streams are set to be 8192 (213) 
bits. 

The rest of the paper is organized as follows: Section 2 
discusses the background on deep learning and stochastic 
computing techniques. Section 3 presents design and 
optimization of the proposed reconfigurable neuron along with 
its key operations, using stochastic computing. The proposed 
NoC structure for coordinating stochastic computing-based 
neurons in the deep learning network is presented in this 
section as well. Section 4 presents experimental results. 
Finally, Section 5 concludes the paper. 

II. BACKGROUND ON DEEP LEARNING AND 
STOCHASTIC COMPUTING 

A. Deep Learning 
In recent years, various deep learning architectures such as 

deep neural networks, convolutional deep neural networks, 
deep belief networks and recurrent neural networks have been 
applied to fields like computer vision, automatic speech 
recognition, natural language processing, audio recognition and 
bioinformatics where they have been shown to produce state-
of-the-art results on various tasks. Deep learning intrinsically is 
deeply and hierarchically structured that attempt to model 
high-level abstractions in data using multiple processing layers 
composed of multiple non-linear transformations.  In this work, 
we take deep convolutional neural networks as example to 
show the availability of implementing ConvNN using 
stochastic computing system. 

A ConvNN architecture is formed by a stack of distinct 
layers that transform the input into an output through a 
differentiable function. The building blocks of a ConvNN 
architecture consists of convolutional layer, pooling layer, 
nonlinear transformation layer, fully connected layer and loss 
layer. By arranging the topology of above layers, several 
impressive work built specific architectures such as LeNet 
[33], and AlexNet [34]. The convolutional layer is the core 
building block of ConvNN. The layer's parameters consist of a 
set of learnable filters (or kernels), which have a small 
receptive field, but extend through the full depth of the input 
data. During the forward pass, each filter is convolved across 
the width and height of the input volume, computing the dot 
product between the entries of the filter and the input and 
producing a 2-dimensional activation map of that filter. As a 
result, the network learns filters that activate when they see 
some specific type of features at some spatial positions in the 
input.  

Another important concept of ConvNNs is pooling, which 
is a form of non-linear down-sampling. There are several non-
linear functions to implement pooling such as max pooling, 
average pooling and L2-norm pooling. The pooling layer 
operates independently on every depth slice of the input and 
resizes it spatially. The pooling operation provides a form of 
translation invariance. Nonlinear transformation includes 
ReLU which is abbreviation of Rectified Linear Units applying 
neurons the non-saturating activation function 𝑓𝑓(𝑥𝑥) =
max (0, 𝑥𝑥) , hyperbolic tangent (tanh) applying neurons the 
saturating activation function 𝑓𝑓(𝑥𝑥) = tanh (𝑥𝑥)  or 𝑓𝑓(𝑥𝑥) =
|tanh (𝑥𝑥)|  and sigmoid applying neurons the activation 
function 𝑓𝑓(𝑥𝑥) = (1 + 𝑒𝑒−𝑥𝑥)−1 . Fully connected layer is a 
normal neural network layer with its inputs fully connected 
with its previous layer. The loss layer of ConvNN specifies 
how the network training penalizes the deviation between the 
predicted labels and true labels, and it is normally the last layer 
in the network. Various loss functions, such as softmax loss, 
sigmoid cross-entropy loss or Euclidean loss, may be used 
there for different tasks. 

B. Stochastic Computing 
Deviated from the conventional binary computing 

(referred as conventional computing), stochastic computing 
(SC) represents any number using a stream of bits. Here the 
value of real number x in the unit interval is interpreted by the 
ratio of bit-1 in the entire bit-stream, i.e., P(𝑋𝑋 = 1) . For 
instance, the 8-bit sequence 00100101 containing three 1s 
denotes x = P(X = 1) = 3/8 = 0.375. Since each bit has the 
same weight, number representation in stochastic computing is 
unary and hence enables different interpretations for the same 
value. Besides this unipolar coding format [16], bipolar coding 
format [16] is another popular number representation scheme 
in stochastic computing. In the scenario of bipolar coding, the 
relationship between x and P(𝑋𝑋 = 1)  becomes P(𝑋𝑋 = 1) =
(𝑥𝑥 + 1)/2 , which enables the stochastic representation for 
negative number. Notice that for either unipolar or bipolar 
coding format, the represented number ranges in [0, 1] or [-1, 
1]. To represent a number beyond this range, a pre-scaling 
operation [21] or integer bit-stream based representation [22] 
can be used to relax this constraint.  

A major advantage of stochastic computing is its ultra-low 
hardware cost: Many complicated arithmetic functions can 
now be implemented with very simple logic circuits. For 
instance, as shown in Fig. 1, the real multiplication can be 



performed with an AND gate in the unipolar coding form 
since 𝑐𝑐 = 𝑃𝑃(𝐶𝐶 = 1) = 𝑃𝑃(𝐴𝐴 = 1)𝑃𝑃(𝐵𝐵 = 1)  = 𝑎𝑎𝑎𝑎  or with an 
XNOR gate in bipolar coding form since 𝑐𝑐 = 2𝑃𝑃(𝐶𝐶 = 1)– 1 =
2(𝑃𝑃(𝐴𝐴 = 1)𝑃𝑃(𝐵𝐵 = 1) + 𝑃𝑃(𝐴𝐴 = 0)𝑃𝑃(𝐵𝐵 = 0))– 1 = (2𝑃𝑃(𝐴𝐴 =
1)– 1)(2𝑃𝑃(𝐵𝐵 = 1)– 1) = 𝑎𝑎𝑎𝑎 . Another example is regarding 
the adder, which can be simply implemented with a 
multiplexer (see Fig. 2) in the scenario of stochastic 
computing, for 𝑐𝑐 = 𝑃𝑃(𝐶𝐶 = 1) = 1/2(𝑃𝑃(𝐴𝐴 = 1) + 1/2𝑃𝑃(𝐵𝐵 =
1) = 1/2(𝑎𝑎 + 𝑎𝑎) . Additionally, the addition in the bipolar 
form uses this multiplexer as well, since 𝑐𝑐 = 2𝑃𝑃(𝐶𝐶 = 1)– 1 =
2(1/2(𝑃𝑃(𝐴𝐴 = 1) + 1/2𝑃𝑃(𝐵𝐵 = 1))– 1 = 1/2(2𝑃𝑃(𝐴𝐴 =
1)– 1) + (2𝑃𝑃(𝐵𝐵 = 1)– 1)) = 1/2(𝑎𝑎 + 𝑎𝑎).  
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b
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(a) (b)  
Fig. 1. Stochastic multiplication using: (a) unipolar encoding (b) bipolar 
encoding. 

In general, such significant saving in hardware resource 
makes stochastic computing circuits well-suited for the area-
constrained applications, such as signal sensing and 
processing in wearable devices. Besides, the abundant budget 
on area offers immense design space in optimizing hardware 
performance in terms of power, latency and speed via efficient 
tradeoffs between area and those metrics, thereby implying the 
potential application of stochastic computing in large-scale 
systems that requires massive parallelism for basic computing 
units.  
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Fig. 2. Scaled addition in stochastic computing. 

Another advantage of stochastic computing is its inherent 
error-resilience. By nature, the redundant representation of 
stochastic computing translates to the strong capability for 
tolerating transient error and soft error (bit-flipping) since 
each bit has the same weight in bit-stream. For instance, as 
reported in [18]-[20], compared to their conventional 
computing counterparts, the stochastic digital signal 
processing component shows much better error-resilience 
capability, which is attractive for the emerging noise-rich deep 
nanoscale CMOS era. Inspired by these encouraging 
characteristics of stochastic computing, prior efforts have 
investigated stochastic system in different practical 
applications, including image processing [21][23], control 
systems [25], etc. 

(2/8)  00100100
(4/8)  01101001 00100000   (1/8)

00000000   (0/8)(2/8)  00100100
(4/8)  11001001

(a)

(b)  
Fig. 3. Stochastic unipolar multiplication (a) expected result (b) unexpected 
result. 

However, despite its advantage on low complexity and 
high error-resilience, stochastic computing suffers some 

drawbacks. As Fig. 3 displays, both bit streams 01101001 as 
well as 11001001 can represent 4/8, but they definitely result 
in different results. This example illustrates a key problem that 
how to generate good stochastic numbers to decrease the 
inaccuracy as possible. According to [30], there are two 
sources of inaccuracy: random fluctuations in stochastic 
number representation and correlations among the numbers 
that participate in the calculation. Reference [30] points out 
that two bit streams S1=S1(n)S1(n-1)…S1(1) and 
S2=S2(n)S2(n-1)…S2(1) are said to be uncorrelated if and 
only if: 

∑ 𝑆𝑆1(𝑖𝑖)𝑆𝑆2(𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = ∑ 𝑆𝑆1(𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ×∑ 𝑆𝑆2(𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                   (1)  

Thus the two sources of inaccuracy mentioned above are 
correlated to the randomness and lengths of the stochastic 
numbers. Therefore, a good random number generator and 
long enough bit-stream are crucial for reliable stochastic 
computing. High-efficiency and low-area designs of random 
number generators, e.g., the Intel random number generator 
[35], can be utilized to fulfill this goal. 

III. DESIGN AND OPTIMIZATION OF HARDWARE 
NEURON USING STOCHASTIC COMPUTING 

A. Stochastic Computing-Based Inner Product Calculation 
The kernel function in neurons of deep learning systems is 

to calculate the inner product of input signals and weight 
vector of the neuron, and hence it is necessary to investigate 
the low-complexity and high-efficiency implementation of 
inner product calculations. Based on its mathematic form, the 
fully-parallel hardware implementation of size-N inner product 
requires an array of N multipliers and a depth-log2N adder tree. 
The huge hardware cost of multiplier arrays and adder tree 
with a large N (when neuron connectivity is high) prohibits the 
implementation of inner product calculation with fully parallel 
style in the conventional computing domain. On the other 
hand, implementing the inner product calculation using a 
sequential style will require significantly lower hardware cost 
(and power consumption) but exhibit higher latency (lower 
performance). 

In this work we develop low-complexity fully-parallel 
inner product calculation in stochastic computing domain. Fig. 
4 shows the hardware architecture for size-N stochastic inner 
product calculation, which contains an array of XNOR-based 
multipliers and an adder tree. Here the XNOR gate, instead of 
AND gate, is used for performing multiplication since bipolar-
form of stochastic computing is needed to process negative 
numbers. For the adder tree, each component adder is the 
multiplexer shown in Fig. 2.  
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Fig. 4. Hardware architecture of size-N stochastic inner product 



B. Other Basic Operations in Neurons for Deep Learning 
Besides the inner product, some other basic operations, e.g., 

pooling, activation function, back propagation, are also 
required in the neurons of different types of deep learning 
systems. In this work, we investigated the designs of these 
important operations in stochastic computing. 

1) Pooling 
Pooling is an important operation that enables significant 

reduction of inter-layer connection in ConvNN as well as 
retaining the translation invariance of the extracted features. In 
general, pooling can be performed in the form of max pooling 
(𝑠𝑠𝑗𝑗  =  𝑚𝑚𝑎𝑎𝑥𝑥(𝑎𝑎𝑖𝑖)) or average pooling (𝑠𝑠𝑗𝑗  =  𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚(𝑎𝑎𝑖𝑖)) for 
𝑖𝑖 ∈ 𝑅𝑅𝑗𝑗 where 𝑎𝑎𝑖𝑖 is the activation result of the i-th element in 
the feature map, 𝑅𝑅𝑗𝑗  is the current pooling region of feature 
map, and 𝑠𝑠𝑗𝑗 is the corresponding pooling output.  
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Fig. 5. Stochastic computing circuit for 2x2 average pooling 

In the proposed stochastic-computing-based neuron for 
deep learning systems, average pooling is adopted as the 
preferred pooling technique since it can be easily implemented 
using very simple logic circuit. For instance, as seen in Fig. 5, 
the stochastic arithmetic mean over a 2 × 2  region only 
requires three multiplexers, which is much simpler than the 
implementation in the conventional computing domain. In 
addition, the use of average pooling does not incur severe 
accuracy loss as compared to using max pooling. As indicated 
in [25], for a ConvNN trained for CIFAR 10 dataset, average 
pooling results in the similar test error (19.24%) compared to 
the case using max pooling (19.40%) but with lower 
convergence speed. However, since stochastic computing 
enables much higher parallelism degree in hardware and 
stochastic circuits for average pooling is very simple, such 
drawback on speed can be easily avoided. 

2) Nonlinear Activation 
Nonlinear activation is widely used in the inference and 

learning phases of different types of deep learning networks 
[1]-[4]. Usually following inner product calculation, the 
nonlinear activation is the key operation that enhances the 
representation capability of neuron/neural network. In general, 
although numerous functions can offer nonlinear 
transformation, the most popular activation functions in 
practice are sigmoid as 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 1/(1 + 𝑒𝑒−𝑥𝑥), tanh as 𝑦𝑦 =
𝑓𝑓(𝑥𝑥) = (𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥)/(𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥) , and Rectified Linear Unit 
(ReLU) as 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑎𝑎𝑥𝑥 (𝑥𝑥, 0). Here sigmoid and tanh are used 
as activation functions in both DBN and ConvNN, while 
ReLU is only used in ConvNN.  

In this work, for the convenience of maximizing 
reconfigurability of the neuron, the tanh function is selected as 
the nonlinear activation function for all types of deep learning 
networks. The reasons are: (i) Replacing sigmoid or ReLU 
function by tanh function does not cause accuracy loss in 

DBN or ConvNN. As reported in [26], with different 
configurations of network size and training/test datasets, the 
replacement of ReLU by tanh function in ConvNN always 
results in very close test error. For instance, a four-layer 
ConvNN achieves 25% classification error on CIFAR-10 
dataset with either ReLU or tanh function [26]. (ii) In the 
scenario of stochastic computing, the tanh function can be 
easily implemented by a symmetric K-state finite state 
machine (FSM) which is shown in  

Fig. 6 [16]. Compared to the piecewise linear 
approximation (PLAN)-based implementation [27] in 
conventional computing, the K-state FSM design for tanh 
function in stochastic computing has much lower hardware 
cost. 

S0 S1 Sk-2Sk/2Sk/k-2 Sk-1

Out=0 Out=1

Input=0

Input=0 Input=0 Input=0 Input=0 Input=0

Input=1 Input=1 Input=1 Input=1 Input=1
Input=1

 

Fig. 6. Stochastic design for tanh function using FSM 

According to [17], the K-state FSM and tanh have the 
following relationship:  

Stanh(𝐾𝐾, 𝑥𝑥) = tanh (𝐾𝐾
2
𝑥𝑥)                          (2) 

where K is the number of states, x is the input stream sent to 
the FSM Stanh(𝐾𝐾, 𝑥𝑥). For a specific stochastic stream 𝑥𝑥′ that 
we want to calculate tanh(𝑥𝑥′), we can set 

 𝑥𝑥 = 2𝑥𝑥′/𝐾𝐾.                                      (3)  
and thereby tanh(𝑥𝑥′) = tanh (𝐾𝐾

2
𝑥𝑥). 

Hence, in order to calculate the activation result of the 
input stream 𝑥𝑥′, it should be preprocessed by Eqn. (3), and 
then 𝑥𝑥  is sent into the FSM Stanh . Additionally, the 
calculation accuracy of the K-state FSM is decided by (i) the 
length of the stochastic bit stream and (ii) the number of states 
K. These two parameters are properly optimized in our 
experiments which are discussed in Section 4. 

3) Convolution 
Convolution (filtering) is the critical and unique operation 

in ConvNN. By exploiting local similarity of inputs, the 
convolution operation enables significant reduction of the 
required inter-layer connection, especially when the inputs to 
the networks are the inherently stationary natural images. 

This paper used the stochastic inner product circuit to 
perform the convolution operation, which is essentially just 
the inner product between the convolution kernel (filter) and 
the local regions of input signals. Therefore, the convolution 
operation in ConvNN can also be implemented with very 
simple stochastic circuits as shown in Fig. 4.  

4) Back-Propagation (BP) for Learning 
To date, the underlying leaning strategy for all deep 

learning networks is the back-propagation (BP) approach 
[1][2]. Consider any neuron 𝑚𝑚𝑐𝑐  in layer i. 
The BP algorithm first calculates/updates the discrepancy 𝛿𝛿𝑐𝑐𝑖𝑖  
of the neuron 𝑚𝑚𝑐𝑐 as: 

𝛿𝛿𝑐𝑐𝑖𝑖 ← (𝒘𝒘𝑐𝑐
(𝑖𝑖+1) ∙ 𝜹𝜹(𝑖𝑖+1))𝑓𝑓′(𝑧𝑧𝑐𝑐)                 (4) 



where 𝒘𝒘𝑐𝑐
(𝑖𝑖+1) is the vector of the connection weights between 

𝑚𝑚𝑐𝑐  and all neurons in layer (𝑖𝑖 + 1) , and 𝜹𝜹(𝑖𝑖+1)  is the 
discrepancy vector of neurons in layer (𝑖𝑖 + 1). In addition, 𝑧𝑧𝑐𝑐 
is the input of the activation function 𝑓𝑓(𝑥𝑥)  in the 𝑚𝑚𝑐𝑐 , and 
𝑓𝑓′(𝑥𝑥)  is the derivative of 𝑓𝑓(𝑥𝑥). 

After calculating 𝛿𝛿𝑐𝑐𝑖𝑖 , the neuron 𝑚𝑚𝑐𝑐  will update 
connection weights with the neurons in layer (𝑖𝑖 − 1). Let 
𝑤𝑤𝑏𝑏𝑐𝑐 denote the weight between 𝑚𝑚𝑐𝑐 and neuron 𝑚𝑚𝑏𝑏 in layer 
(𝑖𝑖 − 1), then 𝑤𝑤𝑏𝑏𝑐𝑐 can be updated as follows: 

∆𝑤𝑤𝑏𝑏𝑐𝑐 ← ∆𝑤𝑤𝑏𝑏𝑐𝑐 + 𝑎𝑎𝑏𝑏𝛿𝛿𝑐𝑐𝑖𝑖                        (5) 
𝑤𝑤𝑏𝑏𝑐𝑐 ← 𝑤𝑤𝑏𝑏𝑐𝑐 − ∆𝑤𝑤𝑏𝑏𝑐𝑐                          (6) 

where 𝑎𝑎𝑏𝑏  is the output from the nonlinear activation 
function 𝑓𝑓(𝑥𝑥) of 𝑚𝑚𝑏𝑏. 

In the scenario of stochastic computing, all operations in 
Equations (2)-(4), such as inner product calculation and 
multiplication, can be implemented in very simple logic 
circuits that have been analyzed above. In addition, the 
hardware architectures for 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥)  and 𝑓𝑓′(𝑥𝑥) = 1 −
tanh2(𝑥𝑥) can also be constructed using stochastic computing. 
Therefore, the entire back-propagation procedure can be 
implemented with simple fully parallel stochastic circuits, 
thereby leading to a significant acceleration of the training 
procedure of large-scale deep learning systems. 
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Fig. 7. Reconfigurable neuron diagram 
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Fig. 8. NoC structure of SC-based neurons 

C. Hardware Design of Reconfigurable Neuron Using 
Stochastic Computing 
Based on the designs of fundamental operations, the 

hardware design of reconfigurable neuron using stochastic 
computing is developed. Fig. 7 illustrates the overall diagram 
of the proposed neuron design, integrating inner product 

calculation, activation function, average pooling, etc., all 
based on stochastic computing. The proposed neuron could be 
reconfigured for different types of neural networks (e.g., 
DBN, ConvNN) or for different layers of neural network if it 
uses heterogeneous neurons at different layers (e.g., 
ConvNN). Because we only use tanh function for activation 
function, enabling reconfigurability for DBN and ConvNN 
will not cause a much hardware overhead. 

D. Design of NoC Structure for Deep Learning Systems 
For hardware implementation of stochastic computing-

based large-scale deep learning systems, we propose NoC 
communication structure as shown in Fig. 8 for coordinating 
and supporting communications among neurons. The reason 
is, compared with the simpler shared bus structure among 
neurons, a mesh network-based NoC structure is more suitable 
for large-scale deep learning systems due to its higher 
parallelism degree in neuron communications and higher 
scalability [28][29].  

Fig. 8 illustrates that the NoC structure connects adjacent 
core tiles to form a 2D mesh network. Each core tile 
comprises one hardware implementation of stochastic 
computing-based neuron, i.e., the physical neuron, and an 
NoC router. Please note that due to the extremely small 
footprint of a physical neuron, a single neuron (at the 
software/algorithm level) can be mapped to a physical neuron 
(at hardware level) without using the notion of virtual neuron 
[15], in which multiple virtual neurons share one physical 
neuron and operate in a time-multiplexed manner. On the 
other hand, NoC routers are responsible for routing neuron 
communications, which are encoded in packets with 
destination neuron addresses, to nearby routers. A neuron 
communication packet will eventually be routed from a source 
neuron to a set of destination neurons according to neural 
network connectivity. 

IV. EXPERIMENTS AND ANALYSIS 
To investigate the functionality and performance of our 

proposed stochastic computing-based deep learning system, a 
set of simulations are conducted. We first do experiments to 
depict the relations between the accuracy and design 
parameters of stochastic computing-based components inside 
a neuron (the adder, multiplier and activation function). Then, 
these components are organized into neurons to be put into the 
deep learning system presented in this paper. 

A. Investigations on Stochastic Computing-based 
Components 
The lengths of input bit streams can make a significant 

effect on the accuracy of stochastic computing. Thus to reach 
a higher accuracy, it is desirable to increase the bit stream 
length. However, a longer bit stream will also result in a 
longer latency. Hence, to resolve this contradiction, we 
conduct a series of experiments to find out the relation 
between accuracy and bit stream length. Then, the length of 
input streams is decided according to the errors. 

Fig. 9 displays the relations between computation accuracy 
and the length of bit streams on some key components in 
stochastic computing. As expected, both the absolute errors 
and the relative errors decrease with the increasing of bit 
stream length, since the randomness of each input bit stream 
significantly increases as the length becomes longer. Thus, the 
error of each represented number is reduced. Apparently, 



bipolar calculations will result in higher error rates than 
unipolar calculations, and multiplications have higher relative 
errors but lower absolute errors than additions. Because the 
multiplication in stochastic computing always results in a 
smaller result than its inputs, but the addition sometimes can 
produce a greater result than its inputs. It is obvious that when 
the result is small, a very small absolute error could result in a 
big relative error. This figure can also help decide the length 
of input bit streams sent to neurons. When the length of bit 
streams is longer than 4096, the relative error of each 
operation is intuitively acceptable. But its performance when 
cooperated together and integrated into a deep learning system 
is still unclear until next subsection.  

 
(a) 

 
(b) 

Fig. 9.  The length of bit stream versus errors for stochastic computing 
components (a) for absolute errors  (b) for relative errors 

Except for the addition and multiplication, the activation 
function is another important component of a neuron. Eqn. (2) 
implies that the accuracy of the K-state FSM is determined by 
both the length of input streams and the number of states. In 
our simulations, we set the length of input streams to 16384 
(with the precision of 14 bits), and simulate the accuracy of 
the FSM with the number of states ranging from 8 to 24.  

TABLE I.  NUMBER OF STATES VERSUS RELATIVE ERROR FOR TANH 
CALCULATION 

Number of States Relative Error  
8 10.06% 
10 8.27% 
12 7.43% 
14 7.36% 
16 7.51% 
18 8.07% 
20 8.55% 
22 9.28% 
24 9.95% 

 
The simulation results shown in TABLE I indicate that 

when the number of states is 14, the most accurate result can 
be achieved. Please notice that more states not always 
generate more accurate results, since the pre-processing will 
reduce the number sent into the FSM by K, where K is the 

number of states. As stated above, when the number is small 
after reduction by K with a big K, the relative errors will be 
enlarged. And Fig. 10 depicts the comparison between the 
FSM-based tanh calculation (Stanh) and actual tanh results 
(tanh) when the number of states is set to 14 and the input 
value is in the range of [-1, 1]. From the figure, we know that 
the FSM-based activation function slightly oscillates around 
the output curve of tanh, thus this result implies that the Stanh 
can be a good candidate to replace the tanh in neurons. 

 
Fig. 10.  Illustrating the accuracy of FSM-based tanh activation function 
(Stanh in the figure) vs. the actual tanh calculation results 

B. Case Study: Classifying MNIST Digits Using Stochastic 
Computing-Based Convolutional Neural Network 
In this section, we use Theano [31] to solve the MNIST 

[32] digits classification problem with LeNet5 [33]. The 
MNIST database has a training set of 60,000 examples, and a 
test set of 10,000 examples. The images are centered in 28 ×
28 blocks. Since we are not investigating the performance of 
ConvNN, we just trained the LeNet5 to achieve an acceptable 
testing error rate. We trained the model 20 epochs with batch 
size of 500 examples (totally 10000 training examples) and we 
set the learning rate as 0.1. Then we can achieve a testing error 
rate of 1.54% with 10000 testing examples. This is our base 
line performance.  

 
Fig. 11.  Simulation result of LeNet5 for MNIST with different lengths of bit 
streams 

Because from Fig. 9, we can see in generally, the bipolar 
operations’ accuracies are worse than unipolar operations. To 
investigate the worst cases of stochastic-based computing, thus, 
we replaced addition, multiplication and tanh operators with 
our stochastic computing-based bipolar operators. Also we 
scaled the numbers before we use the stochastic operators 
because they are supposed to handle numbers in the range of [-
1,1]. Based on TABLE I. with different lengths of bit streams 
for addition/multiplication, we achieve different test errors 
shown in Fig. 11. We can observe that when bit streams 
representing each number are only 128 bits long, the error rate 
is very high compared to the base line. And when we increase 
the lengths of bit streams, the error rates decrease sharply. 
When each bit stream is about 8000 bits long, the error rate 



saturates to the baseline error rate of 1.54%. And the error rate 
of 1.51% with stochastic computing-based operators even 
outperform the baseline error rate when the bit-stream length is 
32768. The reason is that the random errors brought by the 
stochastic computing-based arithmetic operations compensate 
themselves during arithmetic operations in a neural network. 
When a number is represented more randomly, the 
compensation effect is more visible. Hence the compensation 
effect leads to the correction to improve the neural network 
performance when a number is represented extreme randomly 
(with a very long bit stream).  

V. CONCLUSION 
In this paper, we investigate the availability of using 

stochastic computing technique to implement reconfigurable 
large-scale deep learning systems. The most important 
components and operations of a deep learning system, 
including the neuron, the pooling function, the activation 
function and the back-propagation function, etc., are all 
implemented in the form of stochastic computing. Our 
experiments demonstrate that the error rates decrease with the 
increasing of the lengths of bit streams. Moreover, when the 
bit streams are set to be 8192 bits, classification of MNIST 
digits by stochastic computing can perform as low error rate as 
that by normal arithmetic operations. 
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