
Designing Reconfigurable Large-Scale Deep
Learning Systems Using Stochastic Computing

Ao Ren*, Zhe Li*, Yanzhi Wang, Qinru Qiu
Dept. of Electrical Engineering & Computer Science

Syracuse University
Syracuse, NY 13244, USA

{aren, zli89, ywang393, qiqiu}@syr.edu

Bo Yuan
Department of Electrical Engineering

 City University of New York, City College
 New York, NY 10031, USA

byuan@ccny.cuny.edu

Abstract—Deep Learning, as an important branch of machine
learning and neural network, is playing an increasingly
important role in a number of fields like computer vision, natural
language processing, etc. However, large-scale deep learning
systems mainly operate in high-performance server clusters, thus
restricting the application extensions to personal or mobile
devices. The solution proposed in this paper is taking advantage
of the fantastic features of stochastic computing methods.
Stochastic computing is a type of data representation and
processing technique, which uses a binary bit stream to represent
a probability number (by counting the number of ones in this bit
stream). In the stochastic computing area, some key arithmetic
operations such as additions or multiplications can be
implemented with very simple components like AND gates or
multiplexers, respectively. Thus it provides an immense design
space for integrating a large amount of neurons and enabling
fully parallel and scalable hardware implementations of large-
scale deep learning systems. In this paper, we present a
reconfigurable large-scale deep learning system based on
stochastic computing technologies, including the design of the
neuron, the convolution function, the back-propagation function
and some other basic operations. And the network-on-chip
technique is also proposed in this paper to achieve the goal of
implementing a large-scale hardware system. Our experiments
validate the functionality of reconfigurable deep learning systems
using stochastic computing, and demonstrate that when the bit
streams are set to be 8192 bits, classification of MNIST digits by
stochastic computing can perform as low error rate as that by
normal arithmetic operations.

Keywords—Stochastic computing; deep learning; neuron;
reconfigurable; large-scale.

I. INTRODUCTION
In recent years, the machine learning technology lends the

emerging of autonomous systems, such as unmanned vehicles,
robotics, and cognitive wearable devices. Deep Learning, as a
new branch of machine learning research, is representation
learning based and capable of overcoming the limitations of
processing natural data in their raw form, which are faced by
the conventional machine learning techniques. Recently, deep
learning has been proven to be an effective technique that is
capable of handling unstructured data for both supervised and
unsupervised learning [1]-[3]. The deep layered structure
significantly improves learning performance, however, also
increases memory and computation complexity.

Nowadays, large-scale deep neural networks mainly
operate in high-performance server clusters, GPU or FPGA

clusters [4]-[11], and have attracted many research attentions
on enhancing parallelism and scalability, and reducing power
consumptions as well as synchronization overheads [4][6][10].
However, the computing requirement at server or GPU cluster
level implies high power/energy consumptions and prohibits
the wide application of deep learning systems in personal
systems or mobile devices. One promising method to
overcome this shortcoming is designing specific hardware-
based deep learning systems, in order to exploit the maximum
degree of parallelism and achieve significant reduction in
power/energy.

IBM TrueNorth neuro-synaptic processor [15], although in
essence not for deep learning applications but for spiking
neural networks, is a breakthrough effort in this direction.
TrueNorth has integrated 4,096 physical neurons, each
accommodating up to 256 virtual neurons in the time-
multiplexed manner. This time-multiplexing operating manner
has restricted the parallelism degree and performance.
Moreover, a desirable hardware-based deep learning system
should be able to possess online training/learning capability
and re-configurability for different applications, whose
properties are typically missing in state-of-the-art hardware
implementations of neural networks [12]-[15]. The challenges
to design highly scalable and parallel hardware deep learning
systems that also provide online learning capability necessitate
the investigation on novel computing paradigm spanning
hardware, algorithm, and application.

Stochastic Computing (SC) [16][17], as a unique data
representation and processing technique, has the potential to
enable the design of fully parallel and scalable hardware
implementations of large-scale deep learning systems, due to
the following reasons: First, many complex arithmetic
operations can be implemented with very simple hardware
logic in stochastic computing framework [16], which offers an
immense design space for (i) neuron integrations due to the
significantly reduced area per neuron and (ii) performance
optimizations with respect to resiliency, power/energy, and
speed by trading off the abundant area budget. Second,
stochastic computing has inherently strong fault tolerance
against transient and soft errors [18]-[20], because it processes
data in the form of bit streams that are interpreted as
probabilities in contrast to the traditional computing that
operates on the positional representation of data. Based on
these encouraging characteristics, stochastic computing can
potentially trigger a revolutionary reshaping of hardware
design of large-scale deep learning systems with orders-of-

* Ao Ren and Zhe Li contributed equally to this work

magnitude improvements in scalability, performance,
power/energy efficiency, and resiliency.

In this paper, we investigate highly scalable hardware-
based deep learning systems using stochastic computing. Our
target is to develop a universal platform of hardware deep
learning systems for various applications, which supports
online learning capability and re-configurability for various
types of neural networks such as deep belief network (DBN)
or convolutional neural network (ConvNN) and for different
applications. The target platform resembles FPFA for digital
circuits and systems. In order to achieve this goal as well as
high performance, low energy/power consumption, high
scalability and resiliency, we propose novel hardware design
of neurons using stochastic computing. The major computing
tasks, e.g., inference and learning, of the neuron are performed
in the stochastic computing domain based on our novel
designs of stochastic computing-based inner product
calculation. The proposed neuron achieves online learning
capability and re-configurability, both for different types of
neural networks such as DBN and ConvNN, and for different
applications. It achieves extremely small hardware footprint
and power/energy consumptions. At the network-on-chip
(NoC) level, which coordinates neuron communications, we
propose high-efficient, low-hardware cost, and low-power
NoC structure connecting and coordinating a large number of
stochastic computing-based neurons.

Extensive experimental results have been conducted on
both the hardware design and the testing results on various
deep learning benchmarks, e.g., classifying MNIST digits by
ConvNN with different lengths of bit streams. Experimental
results demonstrate that the error rate can be restricted around
1.54% which is the base line performance of trained ConvNN
model when the lengths of bit streams are set to be 8192 (213)
bits.

The rest of the paper is organized as follows: Section 2
discusses the background on deep learning and stochastic
computing techniques. Section 3 presents design and
optimization of the proposed reconfigurable neuron along with
its key operations, using stochastic computing. The proposed
NoC structure for coordinating stochastic computing-based
neurons in the deep learning network is presented in this
section as well. Section 4 presents experimental results.
Finally, Section 5 concludes the paper.

II. BACKGROUND ON DEEP LEARNING AND
STOCHASTIC COMPUTING

A. Deep Learning
In recent years, various deep learning architectures such as

deep neural networks, convolutional deep neural networks,
deep belief networks and recurrent neural networks have been
applied to fields like computer vision, automatic speech
recognition, natural language processing, audio recognition and
bioinformatics where they have been shown to produce state-
of-the-art results on various tasks. Deep learning intrinsically is
deeply and hierarchically structured that attempt to model
high-level abstractions in data using multiple processing layers
composed of multiple non-linear transformations. In this work,
we take deep convolutional neural networks as example to
show the availability of implementing ConvNN using
stochastic computing system.

A ConvNN architecture is formed by a stack of distinct
layers that transform the input into an output through a
differentiable function. The building blocks of a ConvNN
architecture consists of convolutional layer, pooling layer,
nonlinear transformation layer, fully connected layer and loss
layer. By arranging the topology of above layers, several
impressive work built specific architectures such as LeNet
[33], and AlexNet [34]. The convolutional layer is the core
building block of ConvNN. The layer's parameters consist of a
set of learnable filters (or kernels), which have a small
receptive field, but extend through the full depth of the input
data. During the forward pass, each filter is convolved across
the width and height of the input volume, computing the dot
product between the entries of the filter and the input and
producing a 2-dimensional activation map of that filter. As a
result, the network learns filters that activate when they see
some specific type of features at some spatial positions in the
input.

Another important concept of ConvNNs is pooling, which
is a form of non-linear down-sampling. There are several non-
linear functions to implement pooling such as max pooling,
average pooling and L2-norm pooling. The pooling layer
operates independently on every depth slice of the input and
resizes it spatially. The pooling operation provides a form of
translation invariance. Nonlinear transformation includes
ReLU which is abbreviation of Rectified Linear Units applying
neurons the non-saturating activation function 𝑓𝑓(𝑥𝑥) =
max (0, 𝑥𝑥) , hyperbolic tangent (tanh) applying neurons the
saturating activation function 𝑓𝑓(𝑥𝑥) = tanh (𝑥𝑥) or 𝑓𝑓(𝑥𝑥) =
|tanh (𝑥𝑥)| and sigmoid applying neurons the activation
function 𝑓𝑓(𝑥𝑥) = (1 + 𝑒𝑒−𝑥𝑥)−1 . Fully connected layer is a
normal neural network layer with its inputs fully connected
with its previous layer. The loss layer of ConvNN specifies
how the network training penalizes the deviation between the
predicted labels and true labels, and it is normally the last layer
in the network. Various loss functions, such as softmax loss,
sigmoid cross-entropy loss or Euclidean loss, may be used
there for different tasks.

B. Stochastic Computing
Deviated from the conventional binary computing

(referred as conventional computing), stochastic computing
(SC) represents any number using a stream of bits. Here the
value of real number x in the unit interval is interpreted by the
ratio of bit-1 in the entire bit-stream, i.e., P(𝑋𝑋 = 1) . For
instance, the 8-bit sequence 00100101 containing three 1s
denotes x = P(X = 1) = 3/8 = 0.375. Since each bit has the
same weight, number representation in stochastic computing is
unary and hence enables different interpretations for the same
value. Besides this unipolar coding format [16], bipolar coding
format [16] is another popular number representation scheme
in stochastic computing. In the scenario of bipolar coding, the
relationship between x and P(𝑋𝑋 = 1) becomes P(𝑋𝑋 = 1) =
(𝑥𝑥 + 1)/2 , which enables the stochastic representation for
negative number. Notice that for either unipolar or bipolar
coding format, the represented number ranges in [0, 1] or [-1,
1]. To represent a number beyond this range, a pre-scaling
operation [21] or integer bit-stream based representation [22]
can be used to relax this constraint.

A major advantage of stochastic computing is its ultra-low
hardware cost: Many complicated arithmetic functions can
now be implemented with very simple logic circuits. For
instance, as shown in Fig. 1, the real multiplication can be

performed with an AND gate in the unipolar coding form
since 𝑐𝑐 = 𝑃𝑃(𝐶𝐶 = 1) = 𝑃𝑃(𝐴𝐴 = 1)𝑃𝑃(𝐵𝐵 = 1) = 𝑎𝑎𝑎𝑎 or with an
XNOR gate in bipolar coding form since 𝑐𝑐 = 2𝑃𝑃(𝐶𝐶 = 1)– 1 =
2(𝑃𝑃(𝐴𝐴 = 1)𝑃𝑃(𝐵𝐵 = 1) + 𝑃𝑃(𝐴𝐴 = 0)𝑃𝑃(𝐵𝐵 = 0))– 1 = (2𝑃𝑃(𝐴𝐴 =
1)– 1)(2𝑃𝑃(𝐵𝐵 = 1)– 1) = 𝑎𝑎𝑎𝑎 . Another example is regarding
the adder, which can be simply implemented with a
multiplexer (see Fig. 2) in the scenario of stochastic
computing, for 𝑐𝑐 = 𝑃𝑃(𝐶𝐶 = 1) = 1/2(𝑃𝑃(𝐴𝐴 = 1) + 1/2𝑃𝑃(𝐵𝐵 =
1) = 1/2(𝑎𝑎 + 𝑎𝑎) . Additionally, the addition in the bipolar
form uses this multiplexer as well, since 𝑐𝑐 = 2𝑃𝑃(𝐶𝐶 = 1)– 1 =
2(1/2(𝑃𝑃(𝐴𝐴 = 1) + 1/2𝑃𝑃(𝐵𝐵 = 1))– 1 = 1/2(2𝑃𝑃(𝐴𝐴 =
1)– 1) + (2𝑃𝑃(𝐵𝐵 = 1)– 1)) = 1/2(𝑎𝑎 + 𝑎𝑎).

axba
b

a
b axb

(a) (b)
Fig. 1. Stochastic multiplication using: (a) unipolar encoding (b) bipolar
encoding.

In general, such significant saving in hardware resource
makes stochastic computing circuits well-suited for the area-
constrained applications, such as signal sensing and
processing in wearable devices. Besides, the abundant budget
on area offers immense design space in optimizing hardware
performance in terms of power, latency and speed via efficient
tradeoffs between area and those metrics, thereby implying the
potential application of stochastic computing in large-scale
systems that requires massive parallelism for basic computing
units.

½ bit stream

(a+b)/2
a

b

M
U

X

Fig. 2. Scaled addition in stochastic computing.

Another advantage of stochastic computing is its inherent
error-resilience. By nature, the redundant representation of
stochastic computing translates to the strong capability for
tolerating transient error and soft error (bit-flipping) since
each bit has the same weight in bit-stream. For instance, as
reported in [18]-[20], compared to their conventional
computing counterparts, the stochastic digital signal
processing component shows much better error-resilience
capability, which is attractive for the emerging noise-rich deep
nanoscale CMOS era. Inspired by these encouraging
characteristics of stochastic computing, prior efforts have
investigated stochastic system in different practical
applications, including image processing [21][23], control
systems [25], etc.

(2/8) 00100100
(4/8) 01101001 00100000 (1/8)

00000000 (0/8)(2/8) 00100100
(4/8) 11001001

(a)

(b)
Fig. 3. Stochastic unipolar multiplication (a) expected result (b) unexpected
result.

However, despite its advantage on low complexity and
high error-resilience, stochastic computing suffers some

drawbacks. As Fig. 3 displays, both bit streams 01101001 as
well as 11001001 can represent 4/8, but they definitely result
in different results. This example illustrates a key problem that
how to generate good stochastic numbers to decrease the
inaccuracy as possible. According to [30], there are two
sources of inaccuracy: random fluctuations in stochastic
number representation and correlations among the numbers
that participate in the calculation. Reference [30] points out
that two bit streams S1=S1(n)S1(n-1)…S1(1) and
S2=S2(n)S2(n-1)…S2(1) are said to be uncorrelated if and
only if:

∑ 𝑆𝑆1(𝑖𝑖)𝑆𝑆2(𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = ∑ 𝑆𝑆1(𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ×∑ 𝑆𝑆2(𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (1)

Thus the two sources of inaccuracy mentioned above are
correlated to the randomness and lengths of the stochastic
numbers. Therefore, a good random number generator and
long enough bit-stream are crucial for reliable stochastic
computing. High-efficiency and low-area designs of random
number generators, e.g., the Intel random number generator
[35], can be utilized to fulfill this goal.

III. DESIGN AND OPTIMIZATION OF HARDWARE
NEURON USING STOCHASTIC COMPUTING

A. Stochastic Computing-Based Inner Product Calculation
The kernel function in neurons of deep learning systems is

to calculate the inner product of input signals and weight
vector of the neuron, and hence it is necessary to investigate
the low-complexity and high-efficiency implementation of
inner product calculations. Based on its mathematic form, the
fully-parallel hardware implementation of size-N inner product
requires an array of N multipliers and a depth-log2N adder tree.
The huge hardware cost of multiplier arrays and adder tree
with a large N (when neuron connectivity is high) prohibits the
implementation of inner product calculation with fully parallel
style in the conventional computing domain. On the other
hand, implementing the inner product calculation using a
sequential style will require significantly lower hardware cost
(and power consumption) but exhibit higher latency (lower
performance).

In this work we develop low-complexity fully-parallel
inner product calculation in stochastic computing domain. Fig.
4 shows the hardware architecture for size-N stochastic inner
product calculation, which contains an array of XNOR-based
multipliers and an adder tree. Here the XNOR gate, instead of
AND gate, is used for performing multiplication since bipolar-
form of stochastic computing is needed to process negative
numbers. For the adder tree, each component adder is the
multiplexer shown in Fig. 2.

a0

b0

a1

b1

Adder

Adder
aN-2

bN-2

aN-1

bN-1

Adder

bit-stream

bit-stream

integer
bit-stream

integer
bit-stream

Stochastic
Activation
Function

integer
bit-stream

Stochastic Inner Product

bit-stream

Fig. 4. Hardware architecture of size-N stochastic inner product

B. Other Basic Operations in Neurons for Deep Learning
Besides the inner product, some other basic operations, e.g.,

pooling, activation function, back propagation, are also
required in the neurons of different types of deep learning
systems. In this work, we investigated the designs of these
important operations in stochastic computing.

1) Pooling
Pooling is an important operation that enables significant

reduction of inter-layer connection in ConvNN as well as
retaining the translation invariance of the extracted features. In
general, pooling can be performed in the form of max pooling
(𝑠𝑠𝑗𝑗 = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑎𝑎𝑖𝑖)) or average pooling (𝑠𝑠𝑗𝑗 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚(𝑎𝑎𝑖𝑖)) for
𝑖𝑖 ∈ 𝑅𝑅𝑗𝑗 where 𝑎𝑎𝑖𝑖 is the activation result of the i-th element in
the feature map, 𝑅𝑅𝑗𝑗 is the current pooling region of feature
map, and 𝑠𝑠𝑗𝑗 is the corresponding pooling output.

½ bit stream

ini,j M
U

X

1/2

M
U

X

1/2

M
U

X

ini,j+1

ini+1,j

ini+1,j+1

out = 1/4∑∑ini+k,j+m

Fig. 5. Stochastic computing circuit for 2x2 average pooling

In the proposed stochastic-computing-based neuron for
deep learning systems, average pooling is adopted as the
preferred pooling technique since it can be easily implemented
using very simple logic circuit. For instance, as seen in Fig. 5,
the stochastic arithmetic mean over a 2 × 2 region only
requires three multiplexers, which is much simpler than the
implementation in the conventional computing domain. In
addition, the use of average pooling does not incur severe
accuracy loss as compared to using max pooling. As indicated
in [25], for a ConvNN trained for CIFAR 10 dataset, average
pooling results in the similar test error (19.24%) compared to
the case using max pooling (19.40%) but with lower
convergence speed. However, since stochastic computing
enables much higher parallelism degree in hardware and
stochastic circuits for average pooling is very simple, such
drawback on speed can be easily avoided.

2) Nonlinear Activation
Nonlinear activation is widely used in the inference and

learning phases of different types of deep learning networks
[1]-[4]. Usually following inner product calculation, the
nonlinear activation is the key operation that enhances the
representation capability of neuron/neural network. In general,
although numerous functions can offer nonlinear
transformation, the most popular activation functions in
practice are sigmoid as 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 1/(1 + 𝑒𝑒−𝑥𝑥), tanh as 𝑦𝑦 =
𝑓𝑓(𝑥𝑥) = (𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥)/(𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥) , and Rectified Linear Unit
(ReLU) as 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑎𝑎𝑥𝑥 (𝑥𝑥, 0). Here sigmoid and tanh are used
as activation functions in both DBN and ConvNN, while
ReLU is only used in ConvNN.

In this work, for the convenience of maximizing
reconfigurability of the neuron, the tanh function is selected as
the nonlinear activation function for all types of deep learning
networks. The reasons are: (i) Replacing sigmoid or ReLU
function by tanh function does not cause accuracy loss in

DBN or ConvNN. As reported in [26], with different
configurations of network size and training/test datasets, the
replacement of ReLU by tanh function in ConvNN always
results in very close test error. For instance, a four-layer
ConvNN achieves 25% classification error on CIFAR-10
dataset with either ReLU or tanh function [26]. (ii) In the
scenario of stochastic computing, the tanh function can be
easily implemented by a symmetric K-state finite state
machine (FSM) which is shown in

Fig. 6 [16]. Compared to the piecewise linear
approximation (PLAN)-based implementation [27] in
conventional computing, the K-state FSM design for tanh
function in stochastic computing has much lower hardware
cost.

S0 S1 Sk-2Sk/2Sk/k-2 Sk-1

Out=0 Out=1

Input=0

Input=0 Input=0 Input=0 Input=0 Input=0

Input=1 Input=1 Input=1 Input=1 Input=1
Input=1

Fig. 6. Stochastic design for tanh function using FSM

According to [17], the K-state FSM and tanh have the
following relationship:

Stanh(𝐾𝐾, 𝑥𝑥) = tanh (𝐾𝐾
2
𝑥𝑥) (2)

where K is the number of states, x is the input stream sent to
the FSM Stanh(𝐾𝐾, 𝑥𝑥). For a specific stochastic stream 𝑥𝑥′ that
we want to calculate tanh(𝑥𝑥′), we can set

 𝑥𝑥 = 2𝑥𝑥′/𝐾𝐾. (3)
and thereby tanh(𝑥𝑥′) = tanh (𝐾𝐾

2
𝑥𝑥).

Hence, in order to calculate the activation result of the
input stream 𝑥𝑥′, it should be preprocessed by Eqn. (3), and
then 𝑥𝑥 is sent into the FSM Stanh . Additionally, the
calculation accuracy of the K-state FSM is decided by (i) the
length of the stochastic bit stream and (ii) the number of states
K. These two parameters are properly optimized in our
experiments which are discussed in Section 4.

3) Convolution
Convolution (filtering) is the critical and unique operation

in ConvNN. By exploiting local similarity of inputs, the
convolution operation enables significant reduction of the
required inter-layer connection, especially when the inputs to
the networks are the inherently stationary natural images.

This paper used the stochastic inner product circuit to
perform the convolution operation, which is essentially just
the inner product between the convolution kernel (filter) and
the local regions of input signals. Therefore, the convolution
operation in ConvNN can also be implemented with very
simple stochastic circuits as shown in Fig. 4.

4) Back-Propagation (BP) for Learning
To date, the underlying leaning strategy for all deep

learning networks is the back-propagation (BP) approach
[1][2]. Consider any neuron 𝑚𝑚𝑐𝑐 in layer i.
The BP algorithm first calculates/updates the discrepancy 𝛿𝛿𝑐𝑐𝑖𝑖
of the neuron 𝑚𝑚𝑐𝑐 as:

𝛿𝛿𝑐𝑐𝑖𝑖 ← (𝒘𝒘𝑐𝑐
(𝑖𝑖+1) ∙ 𝜹𝜹(𝑖𝑖+1))𝑓𝑓′(𝑧𝑧𝑐𝑐) (4)

where 𝒘𝒘𝑐𝑐
(𝑖𝑖+1) is the vector of the connection weights between

𝑚𝑚𝑐𝑐 and all neurons in layer (𝑖𝑖 + 1) , and 𝜹𝜹(𝑖𝑖+1) is the
discrepancy vector of neurons in layer (𝑖𝑖 + 1). In addition, 𝑧𝑧𝑐𝑐
is the input of the activation function 𝑓𝑓(𝑥𝑥) in the 𝑚𝑚𝑐𝑐 , and
𝑓𝑓′(𝑥𝑥) is the derivative of 𝑓𝑓(𝑥𝑥).

After calculating 𝛿𝛿𝑐𝑐𝑖𝑖 , the neuron 𝑚𝑚𝑐𝑐 will update
connection weights with the neurons in layer (𝑖𝑖 − 1). Let
𝑤𝑤𝑏𝑏𝑐𝑐 denote the weight between 𝑚𝑚𝑐𝑐 and neuron 𝑚𝑚𝑏𝑏 in layer
(𝑖𝑖 − 1), then 𝑤𝑤𝑏𝑏𝑐𝑐 can be updated as follows:

∆𝑤𝑤𝑏𝑏𝑐𝑐 ← ∆𝑤𝑤𝑏𝑏𝑐𝑐 + 𝑎𝑎𝑏𝑏𝛿𝛿𝑐𝑐𝑖𝑖 (5)
𝑤𝑤𝑏𝑏𝑐𝑐 ← 𝑤𝑤𝑏𝑏𝑐𝑐 − ∆𝑤𝑤𝑏𝑏𝑐𝑐 (6)

where 𝑎𝑎𝑏𝑏 is the output from the nonlinear activation
function 𝑓𝑓(𝑥𝑥) of 𝑚𝑚𝑏𝑏.

In the scenario of stochastic computing, all operations in
Equations (2)-(4), such as inner product calculation and
multiplication, can be implemented in very simple logic
circuits that have been analyzed above. In addition, the
hardware architectures for 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) and 𝑓𝑓′(𝑥𝑥) = 1 −
tanh2(𝑥𝑥) can also be constructed using stochastic computing.
Therefore, the entire back-propagation procedure can be
implemented with simple fully parallel stochastic circuits,
thereby leading to a significant acceleration of the training
procedure of large-scale deep learning systems.

Inner
Product

Small
Inner

Product

FSM
(tanh)

Mux Tree
(Pooling)

FSM
(tanh)

Mux
Arrays

(addition)

XNOR
Arrays

Inner
Product

FSM
Arrays
(tanh)

Inference DBN

ConvNN

Training

Fig. 7. Reconfigurable neuron diagram

Router

SC-Based
Physical
Neuron

Router

SC-Based
Physical
Neuron

Router

SC-Based
Physical
Neuron

Router

SC-Based
Physical
Neuron

Router

SC-Based
Physical
Neuron

Router

SC-Based
Physical
Neuron

Router

SC-Based
Physical
Neuron

Router

SC-Based
Physical
Neuron

Router

SC-Based
Physical
Neuron

Fig. 8. NoC structure of SC-based neurons

C. Hardware Design of Reconfigurable Neuron Using
Stochastic Computing
Based on the designs of fundamental operations, the

hardware design of reconfigurable neuron using stochastic
computing is developed. Fig. 7 illustrates the overall diagram
of the proposed neuron design, integrating inner product

calculation, activation function, average pooling, etc., all
based on stochastic computing. The proposed neuron could be
reconfigured for different types of neural networks (e.g.,
DBN, ConvNN) or for different layers of neural network if it
uses heterogeneous neurons at different layers (e.g.,
ConvNN). Because we only use tanh function for activation
function, enabling reconfigurability for DBN and ConvNN
will not cause a much hardware overhead.

D. Design of NoC Structure for Deep Learning Systems
For hardware implementation of stochastic computing-

based large-scale deep learning systems, we propose NoC
communication structure as shown in Fig. 8 for coordinating
and supporting communications among neurons. The reason
is, compared with the simpler shared bus structure among
neurons, a mesh network-based NoC structure is more suitable
for large-scale deep learning systems due to its higher
parallelism degree in neuron communications and higher
scalability [28][29].

Fig. 8 illustrates that the NoC structure connects adjacent
core tiles to form a 2D mesh network. Each core tile
comprises one hardware implementation of stochastic
computing-based neuron, i.e., the physical neuron, and an
NoC router. Please note that due to the extremely small
footprint of a physical neuron, a single neuron (at the
software/algorithm level) can be mapped to a physical neuron
(at hardware level) without using the notion of virtual neuron
[15], in which multiple virtual neurons share one physical
neuron and operate in a time-multiplexed manner. On the
other hand, NoC routers are responsible for routing neuron
communications, which are encoded in packets with
destination neuron addresses, to nearby routers. A neuron
communication packet will eventually be routed from a source
neuron to a set of destination neurons according to neural
network connectivity.

IV. EXPERIMENTS AND ANALYSIS
To investigate the functionality and performance of our

proposed stochastic computing-based deep learning system, a
set of simulations are conducted. We first do experiments to
depict the relations between the accuracy and design
parameters of stochastic computing-based components inside
a neuron (the adder, multiplier and activation function). Then,
these components are organized into neurons to be put into the
deep learning system presented in this paper.

A. Investigations on Stochastic Computing-based
Components
The lengths of input bit streams can make a significant

effect on the accuracy of stochastic computing. Thus to reach
a higher accuracy, it is desirable to increase the bit stream
length. However, a longer bit stream will also result in a
longer latency. Hence, to resolve this contradiction, we
conduct a series of experiments to find out the relation
between accuracy and bit stream length. Then, the length of
input streams is decided according to the errors.

Fig. 9 displays the relations between computation accuracy
and the length of bit streams on some key components in
stochastic computing. As expected, both the absolute errors
and the relative errors decrease with the increasing of bit
stream length, since the randomness of each input bit stream
significantly increases as the length becomes longer. Thus, the
error of each represented number is reduced. Apparently,

bipolar calculations will result in higher error rates than
unipolar calculations, and multiplications have higher relative
errors but lower absolute errors than additions. Because the
multiplication in stochastic computing always results in a
smaller result than its inputs, but the addition sometimes can
produce a greater result than its inputs. It is obvious that when
the result is small, a very small absolute error could result in a
big relative error. This figure can also help decide the length
of input bit streams sent to neurons. When the length of bit
streams is longer than 4096, the relative error of each
operation is intuitively acceptable. But its performance when
cooperated together and integrated into a deep learning system
is still unclear until next subsection.

(a)

(b)

Fig. 9. The length of bit stream versus errors for stochastic computing
components (a) for absolute errors (b) for relative errors

Except for the addition and multiplication, the activation
function is another important component of a neuron. Eqn. (2)
implies that the accuracy of the K-state FSM is determined by
both the length of input streams and the number of states. In
our simulations, we set the length of input streams to 16384
(with the precision of 14 bits), and simulate the accuracy of
the FSM with the number of states ranging from 8 to 24.

TABLE I. NUMBER OF STATES VERSUS RELATIVE ERROR FOR TANH
CALCULATION

Number of States Relative Error
8 10.06%
10 8.27%
12 7.43%
14 7.36%
16 7.51%
18 8.07%
20 8.55%
22 9.28%
24 9.95%

The simulation results shown in TABLE I indicate that

when the number of states is 14, the most accurate result can
be achieved. Please notice that more states not always
generate more accurate results, since the pre-processing will
reduce the number sent into the FSM by K, where K is the

number of states. As stated above, when the number is small
after reduction by K with a big K, the relative errors will be
enlarged. And Fig. 10 depicts the comparison between the
FSM-based tanh calculation (Stanh) and actual tanh results
(tanh) when the number of states is set to 14 and the input
value is in the range of [-1, 1]. From the figure, we know that
the FSM-based activation function slightly oscillates around
the output curve of tanh, thus this result implies that the Stanh
can be a good candidate to replace the tanh in neurons.

Fig. 10. Illustrating the accuracy of FSM-based tanh activation function
(Stanh in the figure) vs. the actual tanh calculation results

B. Case Study: Classifying MNIST Digits Using Stochastic
Computing-Based Convolutional Neural Network
In this section, we use Theano [31] to solve the MNIST

[32] digits classification problem with LeNet5 [33]. The
MNIST database has a training set of 60,000 examples, and a
test set of 10,000 examples. The images are centered in 28 ×
28 blocks. Since we are not investigating the performance of
ConvNN, we just trained the LeNet5 to achieve an acceptable
testing error rate. We trained the model 20 epochs with batch
size of 500 examples (totally 10000 training examples) and we
set the learning rate as 0.1. Then we can achieve a testing error
rate of 1.54% with 10000 testing examples. This is our base
line performance.

Fig. 11. Simulation result of LeNet5 for MNIST with different lengths of bit
streams

Because from Fig. 9, we can see in generally, the bipolar
operations’ accuracies are worse than unipolar operations. To
investigate the worst cases of stochastic-based computing, thus,
we replaced addition, multiplication and tanh operators with
our stochastic computing-based bipolar operators. Also we
scaled the numbers before we use the stochastic operators
because they are supposed to handle numbers in the range of [-
1,1]. Based on TABLE I. with different lengths of bit streams
for addition/multiplication, we achieve different test errors
shown in Fig. 11. We can observe that when bit streams
representing each number are only 128 bits long, the error rate
is very high compared to the base line. And when we increase
the lengths of bit streams, the error rates decrease sharply.
When each bit stream is about 8000 bits long, the error rate

saturates to the baseline error rate of 1.54%. And the error rate
of 1.51% with stochastic computing-based operators even
outperform the baseline error rate when the bit-stream length is
32768. The reason is that the random errors brought by the
stochastic computing-based arithmetic operations compensate
themselves during arithmetic operations in a neural network.
When a number is represented more randomly, the
compensation effect is more visible. Hence the compensation
effect leads to the correction to improve the neural network
performance when a number is represented extreme randomly
(with a very long bit stream).

V. CONCLUSION
In this paper, we investigate the availability of using

stochastic computing technique to implement reconfigurable
large-scale deep learning systems. The most important
components and operations of a deep learning system,
including the neuron, the pooling function, the activation
function and the back-propagation function, etc., are all
implemented in the form of stochastic computing. Our
experiments demonstrate that the error rates decrease with the
increasing of the lengths of bit streams. Moreover, when the
bit streams are set to be 8192 bits, classification of MNIST
digits by stochastic computing can perform as low error rate as
that by normal arithmetic operations.

REFERENCES
[1] Y. Bengio, “Learning deep architectures for AI,” Foundations and trends

in Machine Learning, 2009.
[2] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep

belief networks for scalable unsupervised learning of hierarchical
representations,” in Proc. of International Conference on Machine
Learning (ICML), 2009.

[3] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Elsevier Neural Networks, 2015.

[4] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors,” Annual International Conference
on Machine Learning (ICML), 2009.

[5] Q. V. Le, “Building high-level features using large scale unsupervised
learning,” Proc. of ICASSP, 2013.

[6] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
Adam: Building an Efficient and Scalable Deep Learning Training
System”, Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation, 2014.

[7] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M.
Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng, “Large
scale distributed deep networks,” Proc. of Advances in Neural
Information Processing Systems (NIPS), 2012.

[8] A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro,
“Deep learning with COTS HPC systems,” Proc. of Advances in Neural
Information Processing Systems (NIPS), 2013.

[9] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” Proc. of ACM International Conference on
Multimedia, 2014.

[10] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep,
big, simple neural nets for handwritten digital recognition,” Neural
Computation, 2010.

[11] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O.
Delalleau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Bergeron,
and Y. Bengio, “Theano: Deep learning on GPUs with Python,” Journal
of Machine Learning Research, 2011.

[12] Y. Wang, T. Tang, L. Xia, B. Li, P. Gu, H. Yang, H. Li, Y. Xie, "Energy
Efficient RRAM Spiking Neural Network for Real Time Classification."
In Proceedings of the 25th edition on Great Lakes Symposium on VLSI,
pp. 189-194. ACM, 2015.

[13] O. Bichler, D. Querlioz, S. J. Thorpe, J. P. Bourgoin, C. Gamrat,
"Extraction of temporally correlated features from dynamic vision
sensors with spike-timing-dependent plasticity." Neural Networks 32
(2012): 339-348.

[14] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S.
Temple, A. D. Brown, "Overview of the SpiNNaker System
Architecture," in Computers, IEEE Transactions on, vol.62, no.12,
pp.2454-2467, Dec. 2013.

[15] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson et al. "A million spiking-neuron integrated
circuit with a scalable communication network and interface." Science
345, no. 6197 (2014): 668-673.

[16] B. Gaines, “Stochastic computing systems,” Advances in Information
Systems Science, vol. 2, no. 2, pp. 37–172, 1969.

[17] B. D. Brown and H. C. Card, “Stochastic neural computation I:
computational elements,” IEEE Trans. Comput., vol. 50, pp. 891-905,
Sept. 2001.

[18] W. Qian, X. Li, Marc D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Trans. on Computers, vol. 60, no. 1, pp. 93-105, 2011.

[19] Y. Liu and K.K. Parhi, "Lattice FIR Digital Filters using Stochastic
Computing," in Proc. of 2015 IEEE Int. Conf. Acoustics, Speech and
Signal Processing (ICASSP), pp. 1027-1031, April 2015

[20] B. Yuan, Y. Wang and Z. Wang, “Area-Efficient Error-Resilient
Discrete Fourier Transformation Design using Stochastic Computing,”
submitted to Great Lake Symp. on VLSI (GLSVLSI’2016)

[21] B. Yuan, C. Zhang and Z. Wang, “Design Space Exploration for
Hardware-Efficient Stochastic Computing: A Case Study on Discrete
Cosine Transformation”, accepted by IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP’2016)

[22] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu and W. Gross,
“VLSI Implementation of Deep Neural Network using Integral
Stochastic Computing,”, available in arxiv.org.

[23] P. Li and D. Lilja, “A low power fault-tolerance architecture for the
kernel density estimation based image segmentation algorithm,” in Proc.
of IEEE International Conf. on Application-Specific Systems,
Architectures and Processors (ASAP), pp. 161-168, 2011.

[24] D. Zhang and H. Li, “A stochastic-based FPGA controller for an
induction motor drive with integrated neural network algorithms,” IEEE
Trans. Industrial Electronics, vol. 55, no. 2, pp. 551–561, 2008.

[25] M. D. Zeiler and R. Fergus, “Stochastic Pooling for Regularization of
Deep Convolutional Neural Networks,” available in arxiv.org

[26] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Proc. of NIPS, 2012.

[27] D. Larkin, A. Kinane, V. Muresan and N. O’Connor, “An efficient
hardware architecture for a neural network activation function
generator,” in Proc. of the ISNN Int. Symp. on Neural Networks, vol.
144, pp. 1319–1327, 2006.

[28] S. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-
Programmable Gate Arrays, Springer, 1992.

[29] A. B. Kahng, B. Li, L. S. Peh, and K. Samadi, “ORION 2.0: A fast and
accurate NoC power and area model for early-stage design space
exploration,” Proc. of Design, Automation, and Test in Europe (DATE),
2009.

[30] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embed. Comput. Syst, vol. 12, no. 92, May 2013.

[31] TTD Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D.
Bahdanau, N. Ballas et al. "Theano: A Python framework for fast
computation of mathematical expressions." arXiv preprint arXiv, 2016.

[32] LeCun, Yann, C. Cortes, "The MNIST database of handwritten digits." ,
1998.

[33] LeCun, Yann. "LeNet-5, convolutional neural networks." URL:
http://yann. lecun. com/exdb/lenet, 2015.

[34] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." In Advances in
neural information processing systems, pp. 1097-1105. 2012.

[35] B. Jun, P. Kocher, “The Intel Random Number Generator.”,
Cryptography Research Inc. White Paper, 1999.

	I. Introduction
	II. BACKGROUND ON DEEP LEARNING AND STOCHASTIC COMPUTING
	A. Deep Learning
	B. Stochastic Computing

	III. DESIGN AND OPTIMIZATION OF HARDWARE NEURON USING STOCHASTIC COMPUTING
	A. Stochastic Computing-Based Inner Product Calculation
	B. Other Basic Operations in Neurons for Deep Learning
	1) Pooling
	2) Nonlinear Activation
	3) Convolution
	4) Back-Propagation (BP) for Learning

	C. Hardware Design of Reconfigurable Neuron Using Stochastic Computing
	D. Design of NoC Structure for Deep Learning Systems

	IV. Experiments And Analysis
	A. Investigations on Stochastic Computing-based Components
	B. Case Study: Classifying MNIST Digits Using Stochastic Computing-Based Convolutional Neural Network

	V. Conclusion
	References

