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Abstract—Although existing optical character recognition
(OCR) tools can achieve excellent performance in text image
detection and pattern recognition, they usually require a clean
input image. Most of them do not perform well when the image is
partially occluded or smudged. Humans are able to tolerate much
worse image quality during reading because the perception errors
can be corrected by the knowledge in word and sentence level
context. In this paper, we present a brain-inspired information
processing framework for context-aware Intelligent Text
Recognition (ITR) and its acceleration using memristor based
crossbar array. The ITRS has a bottom layer of massive parallel
Brain-state-in-a-box (BSB) engines that give fuzzy pattern
matching results and an upper layer of statistical inference based
error correction. The framework works robustly in noisy
environment. A parallel architecture is presented that
incorporates the memristor crossbar array to accelerate the
pattern matching. Compared to traditional microprocessor, the
accelerator has the potential to provide tremendous area and
power savings and more than 8,000 times speedups.

Keywords—neuromorphic; text recognition; memristor crossbhar
array

[. INTRODUCTION

Military planning, battlefield situation awareness, and strategic
reasoning rely heavily on the knowledge of the local situation and the
understanding of different cultures. A rich source of such knowledge
is presented as natural-language text. In 2009, DARPA launched the
Machine Reading program to develop a universal text-to-knowledge
engine that scavenges digitized text to generate knowledge that can be
managed by the artificial intelligence reasoning systems. The
Machine Reading program limits its scope to the texts available on
the World Wide Web. In real life, text exists in many forms other than
its ASCII representation. These include printed texts such as books,
newspapers and bulletins or hand written texts. There are many
occasions when only the scanned or photographed image of the texts
is available for computer processing. While the machine reading
system bridges the gap between natural language and artificial
intelligence, another bridge has to be constructed to link the natural
state of text to its unique encoding that can be understood by
computers.

Conventional Optical Character Recognition (OCR) tools or pattern
recognition techniques are not enough to meet the challenges in this
task. Because the text images are usually captured under extreme
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circumstances, sometimes the images will be noisy, or incomplete due
to the damages to the printing material, or obscured by marks or
stamps. Pattern recognition is extremely difficult, if not impossible,
when the image is partially occluded or even missing. However, such
tasks are not too difficult for humans, as the errors in image
recognition will be corrected later using semantic and syntactic
context. Most human cognitive procedures involve two interleaved
steps, sensing and association. Together, they provide higher
accuracy.

Computing models have been developed for performing cognitive
functions on raw input signals such as image and audio. One
representative area in this category is the associative neural network
model, which is typically used for pattern recognition. We generally
say that this kind of model performs the “sensing” function. In the
other category, models and algorithms are researched to operate on
the concept-level objects, assuming that they have already been
“recognized” or extracted from raw inputs. In a recent development,
the cogent confabulation model was used for sentence completion
[1][2]. Trained using a large amount of literatures, the confabulation
algorithm has demonstrated the capability of completing a sentence
(given a few starting words) based on conditional probabilities among
the words and phrases. We refer these algorithms as the “association”
models.

The brain inspired signal processing flow could be applied to many
applications. A  proof-of-concept prototype of context-aware
Intelligence Text Recognition system (ITRS) is developed on high
performance computing cluster [3]. The lower layer of the ITRS
performs pattern matching of the input image using a simple non-
linear autoassociative neural network model called Brain-State-in-a-
Box (BSB) [4]. It matches the input image with the stored alphabet. A
race model is introduced that gives fuzzy results of pattern matching.
Multiple matching patterns will be found for one input character
image, which is referred as ambiguity. The upper layer of the ITRS
performs information association using the cogent confabulation
model [1]. It enhances those BSB outputs that have strong
correlations in the context of word and sentence and suppresses those
BSB outputs that are weakly related. In this way, it selects characters
that form the most meaningful words and sentences.

Both BSB and confabulation models are connection based artificial
neural networks, where weight matrices are used to represent
synapses between neurons and their operation can be transformed into
matrix-vector multiplication(s). Hardware realizations of neural
networks require a large volume of memory and are associated with
high cost if built with digital circuits [5].

The existence of the memristor was predicted in circuit theory about
forty year ago [6] and its first physical realization was in 2008 [7].
Afterwards, many memristive materials and devices have been



rediscovered. Intrinsically, a memristor behaves similarly to a
synapse: it can “remember” the total electric charge/flux ever to flow
through it [8]. Moreover, memristor-based memories can achieve a
very high integration density of 100 Gbits/cm?, a few times higher
than flash memory technologies [9]. These unique properties make it
a promising device for massively parallel, large-scale neuromorphic
systems. In particular, memristor crossbar, which employs a
memristor at each intersection of horizontal and vertical metal wires,
can naturally provide the capability of weight matrix storage and
matrix-vector multiplication.

In this paper, we present the brain inspired information processing
framework and its acceleration using memristor crossbar array using
intelligent text image recognition as a case study. The remainder of
the paper is organized as follows. In Section II we introduce the
basics of models used for sensing and association in the ITRS system.
Section III describes the overall system model and the algorithms in
different layers. Section IV gives the details of hardware acceleration
using memristor crossbar array. The experimental results and
discussions are presented in Section V. Section VI summarizes the
work.

II. BACKGROUND

A.  Neural Network and BSB Model

The BSB model is an auto-associative, nonlinear, energy
minimizing neural network. A common application of the BSB model
is to recognize a pattern from a given noisy version. It can also be
used as a pattern recognizer that employs a smooth nearness measure
and generates smooth decision boundaries. It has two main
operations: training and recall. The mathematical model of BSB
recall function can be represented as:

x(t+1)=S(a - Ax(t) + B-x(1)), (1)

where x is an N dimensional real vector and A is an N-by-N
connection matrix, which is trained using the extended Delta rule.
AXx(?) is a matrix-vector multiplication, which is the main function of
the recall operation. ¢ is a scalar constant feedback factor. S is an
inhibition decay constant. S() is the “squash” function defined as
follows:

1, y=>1
S(y)=qy, -l<y<l. 2
-1, y<-1

For a given input pattern x(0), the recall function computes (1)
iteratively until convergence, that is, when all entries of x(#+1) are
either ‘1’ or —1°.

Step 4. Update weights: Aw,=a-(t-y))-%.

Step 5. Repeat Steps 1-4 until the condition |#(7) - y(i)|<6 is satisfied in m
consecutive iterations.

Algorithm 1. BSB training algorithm using Delta rule.

Step 0. Initialize weights (zero or small random values).
Initialize learning rate c.
Step 1. Randomly select one prototype pattern »PeB", k=1,...,m. B" is
the n-dimension binary space (-1, 1).
Set target output to the external input prototype pattern #°: t=.
Step 2.

Compute net inputs: y, = Z T
' j

(Each net input is a combination of weighted signals received
from all units.)

Step 3. Each unit determines its activation (output signal):

Lo oy 2l
Vi =SWin) = Vin» —1<yiy, <1
-1, Vin, <-1

The most fundamental BSB training algorithm is given in
Algorithm 1, which bases on the extended Delta rule [10]. It aims at
finding the weights so as to minimize the square of the error between
a target output pattern and the input prototype pattern.

B. Cogent Confabulation

Cogent confabulation [1] is an emerging computation model that
mimics Hebbian learning, the information storage and interrelation of
symbolic concepts, and the recall operations of the brain. Based on
the theory, the cognitive information process consists of two steps:
learning and recall. During learning, the knowledge links are
established and strengthened as symbols are co-activated. During
recall, a neuron receives excitations from other activated neurons. A
“winner-takes-all” strategy takes place within each lexicon. Only the
neurons (in a lexicon) that represent the winning symbol will be
activated and the winner neurons will activate other neurons through
knowledge links. At the same time, those neurons that did not win in
this procedure will be suppressed.

The confabulation model represents the observation using a set of
features. These features construct the basic dimensions that describe
the world of applications. Different observed attributes of a feature
are referred as symbols. The set of symbols used to describe the same
feature forms a lexicon and the symbols in a lexicon are exclusive to
each other. Knowledge links (KL) are established among lexicons.
They are directed edges from the source lexicons to target lexicons.
Each knowledge link is associated with a matrix. The ijth entry of the
matrix gives the conditional probability log[p(si|tj)] between the
symbols s; in the source lexicon and ¢t; in the target lexicon. The
knowledge matrix is constructed during training by extracting and
associating features from the inputs.

The cogent confabulation model has close resemblance to a neural
system. The symbols are analogous to neurons and knowledge links
between symbols are analogous to synapses between neurons.
Whenever an attribute is observed, the corresponding symbol (i.e.
neuron) is activated, and an excitation is passed to other symbols (i.e.
neurons) through knowledge links (i.e. synapses).

The excitation of a symbol ¢ in lexicon / is calculated by summing
up all incoming knowledge links:

1®) = Bs,er, Zoes, [(5) [In (B22) + 8] 3)

where F; is the set of lexicons that has knowledge links go into
lexicon /, the function I(s) is the excitation level of the source symbol
s. The parameter p is the smallest meaningful value of P(s; | #;). The
parameter B is a positive global constant called the bandgap. The
purpose of introducing B in the function is to ensure that a symbol
receiving N active knowledge links will always have a higher
excitation level than a symbol receiving (N-1) active knowledge links,
regardless of their strength. As we can see, the excitation level of a
symbol is actually its log-likelihood given the observed attributes in
other lexicons.

III. SYSTEM ARCHITECTURE

A. Overview of the ITRS

The ITRS is divided into three layers as shown in Figure 1. The
input of the system is a text image. The first layer is character
recognition based on BSB models. It recalls the stored patterns of the
English alphabet that matches the input image. If there is noise in the
image, multiple matching patterns may be found. The ambiguity can



be removed by considering the word level and sentence level context,
which is achieved by the statistical information association in the
second and third layer where word and sentence is formed using
cogent confabulation models.

In this work, we designed a new “racing” algorithm for BSB
recalls. The algorithm is based on the observations that the
convergence speed of the BSB recall process indicates the distance
between the input and remembered patterns. For a given character
image, we consider all patterns that converge within a certain number
of iterations as potential candidates that may match the input image.
Candidate BSB outputs will be activated and used to trigger the
corresponding symbols in the confabulation model for information
association. By using the racing algorithm, if there is noise in the

...but biggmuinmto pergeiwe tillt
Whe gandcuffs maere ¥ fr me ...

image or the character is partially damaged, multiple matching
patterns will be triggered for the same input image. For example, a
horizontal scratch will make the letter “T” look like the letter “F”. In
this case we have ambiguity in character recognition. The pattern that
cannot form meaningful words and sentences will be eliminated in the
later stages.

Figure 1 shows an example of using the ITRS to read texts that
have been occluded. The BSB algorithm recognizes text images with
its best effort. The word level confabulation provides all possible
words that can be formed based on the recognized characters while
the sentence level confabulation finds the combination among those
words that gives the most meaningful sentence.
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Figure 1. Overall architecture of the models and algorithmic flow.

B. Character Level Image Recognition

In this section we first describe the “racing” mechanism that we
use to implement the multi-answer character recognition process.

Chracter t
Image

Recall 4 Recall

49 iterations 45 itergtions 11 iterations 38 iterations

1 or more candidates

could be selected for
each image

Compare .
tli,...
L converge speed .
Figure 2 An input image is recalled by BSB models
remembering different characters or symbols. Candidates are
selected based on speed of convergence.

Let S denote the set of characters that we want to recognize.
Without loss of generality, assume the size of S is 52, which is the
number of upper and lower case characters in the English alphabet.

We also assume that for each character, there are M typical
variations in terms of different fonts, styles and sizes. In terms of
pattern recognition, there is a total of 52*M patterns to remember
during training and to recognize during recall.

One 256-dimensional BSB model is trained for each character in
S. Therefore there will be a set of 52 BSB models. Each BSB
model is trained for all variations of a character. The multi-answer
implementation utilizes the BSB model’s convergence speed to
represent the similarity between an input image and the stored
pattern. An input image is compared against each one of the 52
BSB models; therefore it triggers 52 recall processes. The number
of iterations that each recall process takes to converge is recorded.
Then we pick up to K “closest” candidates to work with high-level
language models to determine the final output. Figure 2 gives an
example of how the racing mechanism works.

C. Word and Sentence Confabulation

The inputs of word confabulation are characters with ambiguities
referred as candidates. For each input image, one or multiple
character level candidates will be generated by the BSB model.
Candidates correspond to the same input image are exclusive to
each other, therefore, they belong to the same lexicon and hence
suppress each other. Higher order lexicons are also formed for pair
of candidates corresponding to neighboring images.



Confabulation-based word and sentence recall heavily relies on
the quality of the knowledge base (KB). The training of the KB is
the procedure to construct the probability matrix between source
symbols and target symbols. During recall, a lexicon that has
multiple symbols activated is referred as ambiguous lexicon and the
goal of confabulation is to eliminate the ambiguity as much as
possible or to transform it into word level ambiguity, which can be
further eliminated by sentence level confabulation. For each
lexicon that has multiple symbols activated, we calculate the
excitation level of each activated symbol. The N highest excited
symbols in this lexicon are kept active. These symbols will further
excite the symbols in other ambiguous lexicons. Each iteration one
less symbol will be activated. The procedure will continue until
there is only one active symbol in each lexicon.

The sentence level confabulation model is very similar to its
word level counterpart except that there are three levels of lexicons.
The first and second level LUs represent single words and adjacent
word pairs; while the third level of LUs represent the parts-of-
speech tags of the corresponding word.

IV. HARDWARE ACCELERATION OF BSB RECALL

A. Memristor and Crossbar Array

In 2008, HP Lab demonstrated the first memristive device, in
which the memristive effect was achieved by moving the doping
front within a TiO, thin-film [7]. The overall memristance can be
expressed as:

M(p)=p-R;+(1-p)-R,, )

where p (0<p<1) is the relative doping front position, which is the
ratio of doping front position over the total thickness of the TiO,
thin-film, R; and Ry respectively denote the low resistance state
(LRS) and the high resistance state (HRS) of the memristor. The
velocity of doping front movement v(f), driven by the voltage
applied across the memristor V(¢), can be expressed as:

B0, R V@)
dt h? M(p)
where g, is the equivalent mobility of dopants, 4 is the total

thickness of the thin film, and M(p) is the total memristance when

the relative doping front position is p. In general, a certain energy

(or threshold voltage) is required to enable the state change in a

memristive device. When the electrical excitation through a

memristor is greater than the threshold voltage, i.e., V(£)>V, the

memristance changes (in training). Otherwise, a memristor behaves
like a resistor.
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Figure 3 A memristor crossbar array

Crossbar array illustrated in Figure 3 is a typical structure of
memristor based memories. It employs a memristor device at each
intersection of horizontal and vertical metal wires without any
selectors [11]. The memristor crossbar array is naturally attractive

for implementation of connection matrix in neural networks for it
can provide a large number of signal connections within a small
footprint and conduct the weighted combination of input signals
[12][13].

B.  Matrix Multiplication using Memristor Crossbar

In order to use the N-by-N memristor crossbar array illustrated in
Figure 3 for matrix computation, a set of input voltages V,T:{V,v I
Vis ..., Vin} is applied on the word-lines (WL) of the array, and
the current through each bit-line (BL) is collected by measuring the
voltage across a sensing resistor. The same sensing resistors are
used on all BLs with resistance 7, or conductance gs = 1/rs. The
output voltage vector V0T={ Voi, Voo ---» Von}. Assume the
memristor sitting on the connection between WL; and BL; has a
memristance of mij. The corresponding conductance gij=1/mi;,.
Then, the relation between the input and output voltages can be
represented by:

V, =CV,. (6)

Here, C can be represented by the memristors’ conductance and
the load resistors as:
911 " 91w
C = DG" = diag(dy, -, dy) [ i ’ i ], @)

Ina 9NN

whered, =1/(g, + Y. g,,)-

Please note that some non-iterative neuromorphic hardware uses
the output currents Ig as output signals. Since the BSB algorithm
discussed in this work is an iterative network, we take Vg as output
signals, which can be directly fed back to inputs for the next
iteration without extra design cost.

Equation (6) indicates that a trained memristor crossbar array can
be used to construct the weight matrix C, and transfer the input
vector Vi to the output vector V. However, C is not a direct one-
to-one mapping of conductance matrix G as indicated in (7).
Though we can use a numerical iteration method to obtain the exact
mathematical solution of G, it is too complex and hence impractical
when frequent updates are needed.

For simplification, assume g;;€G satisfies gyin<g;;<gmax» Where
Zmin and gu. respectively represent the minimum and the
maximum conductance of all the memristors in the crossbar array.
Thus, a simpler and faster approximation solution to the mapping
problem is defined as:

gj,i=Ci,j'(gmax_gmin)+gmin' 3

A decayed version of the weight matrix C can be approximately
mapped to the conductance matrix G of the memristive array.
Plugging (8) into (7), we have:

o = Cij '(gmax _gmin)+gmin ©)
LT N ’
gt (gmax - gmin)' Z,-:1 Ci,j +N- & min

Note that many memristive materials, such as TiO,, demonstrate
a large gmax/Qmin ratio [7]. Thus, a memristor at the high resistance
state under a low voltage excitation can be regarded as an insulator,
that is, gu,is=0. Moreover, the BSB recall matrix A is a special

N
matrix with a small E L Cij For example, all BSB models used
j=11,

<5

e . . N
for character recognition in our experiments show E 1 Cij
j=1"4,

N
when N = 256. The term E _,C;; can be further reduced by
=11,

. . . . N
increasing the ratio g/gm.x. As a result, the impact of Z ) 1ci j
J=



can be ignored. These two facts indicate that (9) can be further
simplified as:

A

G =G 'gmax/gs-

In summary, with the proposed fast approximation function (8),

A

the memristor crossbar array performs as a decayed matrix C
between the input and output voltage signals.

(10)

C. Transformation of BSB Recall Matrix

A memristor is a physical device with conductance g>0.
Therefore, all elements in matrix C must be positive as shown in
(7). However, in the original BSB recall model, g;;€ A can be either
positive or negative. An alternative solution is moving the whole A
into the positive domain. Since the output x(z+1) will be used as
input signal in the next iteration, a biasing scheme at x(z+1) is
needed to cancel out the shift induced by the modified A. The
biasing scheme involves a vector operation since the shift is
determined by x(¢).

To better maintaining the meaning of the matrix A in physical
mapping and leverage the high integration density of memristor
crossbar, we propose to split the positive and negative elements of
A into two matrixes A" and A~ as:

. a;, ifa;>0 - 0, ifa,;>0
a, . =43 = o and a; . = L
/ 0, ifa, <0 Yo -ay, ifa ;<0

ij?

. (1)

As such, (2) becomes
x(t+1) = S(A"x() - A x(6) + x(1)). (12)
where we set o=£=1. Thus, A" and A~ can be mapped to two

memristor crossbar arrays M, and M, in a decayed version A * and

A

A", respectively, by following (8).

D. Training Memristor Crossbars in BSB Model

A software generated weight matrix can be mapped to the
memristor crossbar arrays based on the assumption that every
memristor in the crossbar could be perfectly programmed to the
required resistance value. However, the traditional crossbar
programming method faces accuracy and efficiency limitations due
to the existence of the sneak paths [11]. Although some recent
works were presented to improve the write/read ability of
memristor crossbars by leveraging the device nonlinearity [11], the
controllability of analog state programming is still limited. In spite
of preparing the memristor crossbars with open-loop writing
operations, we propose a close-loop training method which
iteratively tunes the entire memristor crossbar to the target state.
This technique is based on a modification of the software training
algorithm.

Let’s use the Delta rule in Algorithm 1 as an example. A weight
w;; corresponds to the analog state of the memristor at the cross-
point of the ith row and the jth column in a crossbar array. A
weight updating Aw;; involves multiplying three analog variables:
a, -y, and x;. Though these variables are available in training
scheme design, the hardware implementation to obtain their
multiplication demands unaffordable high computation resources.
Thus, we simplify the weight updating function by trading off the
convergence speed as:

Aw, =a-signt; —y;) - sign(x;) . (13)
Here, sign(t~y;) and sign(x;) are the polarities of #—y; and x;

respectively. sign(z—y;)-sign(x;) represents the direction of the
weight change.

The simplification minimizes the circuit design complexity
meanwhile ensuring the weight change in the same direction as that
of the Delta rule.

V. EXPERIMENTAL RESULTS

We test the ITRS using text images with different levels of
noises. Our test case is extracted from the book “Great
Expectations” by Charles Dickens. The text consists of 96767
letters or 23912 words. The text has not been read during the
training process. In order to explicitly control the noise in the input,
we use generated bit maps of text images instead of scanned text
images. Horizontal scratches are added to the images of letters
selected randomly. The amount of noise in the input is controlled
by two parameters: (1) the thickness of horizontal scratches varies
from one pixel wide to three pixels wide. Figure 4 shows examples
of the three different types of horizontal scratches. Note that the
scratches are located in the center of the text image, where most of
the information to distinguish amongst various characters is found.
Also note that each text image is 15x15 pixels, and a 1~3 pixel
scratch across the image is equivalent to 7~20% missing
information. (2) The probability that a character is scratched varies
from 0.2, 0.4 to 0.6.

Figure 4 Three different horizontal scratches

Table 1 Sentence and word level recall accuracy

Scratch Sentence recall Word recall Overall % correct
[prob. accuracy accuracy words
1l 2| 3] 1 h| 2 3] 1| 2| 3
scratch|scratchiscratch|scratch(scratchiscratch{scratchiscratch(scratch
0.2 0.92| 0.90| 0.86] 0.98| 0.98| 0.97| 0.99] 0.99| 0.98
0.4 0.87| 0.82| 0.76] 0.98| 0.97| 0.95] 0.98| 0.98| 0.96
0.6 0.82| 0.74| 0.65| 0.97| 0.95| 0.93] 0.98| 0.97| 0.94

The outputs of ITRS are compared against the original text. A
sentence (or a word) is considered inaccurately recognized if any
word (or any letter) mismatches the original text. Table 1 gives the
accuracy of word and sentence confabulation in columns 2 and 3.
They are calculated as the number of sentences (or words) that have
been correctly recalled divided by the number of sentence (word)
confabulations that have been invoked. Please note that
word/sentence confabulation is only invoked if there is ambiguity
in the input image. The same table also gives the percentage of
correct words in the fourth column. It is calculated as the total
number of correct words (including both confabulated and none-
confabulated) divided by the total number of words in the text. As
we can see, the accuracy of word confabulation and the overall
percentage of correct words are very close to each other. This is
because the majority of words have at least one scratch. Therefore,
they all need to go through the word confabulation process.

In order to reduce hand shaking time and to improve
communication efficiency, every time a set of 96 character images
is sent to a BSB engine and compared with 93 stored patterns. Each
comparison involves 50 iterations of calculation of Equation (1).
Hence, 93 X 96 X 50 = 446,400 BSB iteration is considered as
one unit workload in the BSB layer. In order to represent a 15x15
pixel character image, the input vector x(f) of the BSB is set to
256x1 dimension and the weight matrix 4 is 256x256. Overall,



each unit of BSB workload consists of 58 billion floating point
operations.
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Figure 5 Processing time of a unit workload of BSB layer

We have implemented the BSB layer on different high
performance computer platforms and compared their performance.
The platforms include: (1) Intel Xeon Sandy Bridge-EP processor
with dual CPU 8 cores 32 SMT running at 3.1 GHz, (2) IBM cell
processor on Sony PlayStation 3, which has one PowerPC core and
6 synergistic processing elements (SPE) (3) NVIDIA C2050 GPU
with 448 CUDA cores and 1288 GFLOP single precision peak
performance, and (4) Intel 7110P Xeon Phi processor with 61 X86
cores running at 1.1 GHz frequency. Figure 5 compares the
processing time of one unit workload of BSB on those high
performance computing platforms.

Table 2 Performance, power and area of 256x256 memristor
crossbar array

Implementations | Processing time | Area (mm?®) | Power consumption
Memristor crossbar 60us 151 875mW
Xeon processor 0.5s 435 183W

We created a Verilog-A memristor model by adopting the device
parameters from [14] and scaling them to 65nm node based on the
resistance and device area relation given in [15]. Simulation is
carried out to measure the performance and power consumption of
a neuromorphic computing accelerator (NCA) with a 64x64
memristor crossbar array. We scaled the results to obtain an
estimation of the NCA with size 256x256. The NCA includes a set
of op-amp that used as analog buffer to hold the data, a 256x256
memristor based crossbar array, and a set of DAC and ADC
circuitry as the interface between the NCA and its digital
environment. For a lower area cost, we assume that one AD/DA
converter is shared among every 4 inputs/outputs. Please note that
the racing model of BSB actually does not require any AD/DA
conversion, because we are only interested in when the BSB
converges, i.e. when all of the V’s are squashed to +1 or —1, hence
a simple comparator is sufficient. We further assume that a set of
93 NCAs are used and each of them implement one BSB model.
Table 2 gives the area, power consumption and performance
estimation of the accelerator. The processing time is estimated as
the time needed to complete one unit workload of BSB
computation, which is to check a set of 96 images. In the same
table, we also list the power consumption, area and performance of
Intel Xeon Sandy Bridge-EP processor as a reference. As we can
see, the memristor based neuromorphic computing accelerator
provides tremendous reduction from every perspective. We need to
further point out that, even though we have assumed shared
AD/DA converters, they still count for more than 95% of total
power consumption and more than 80% of total area. As we
mentioned, the AD/DA can be replaced by simple comparators, so
the area and power consumption of the NCAs can be further
reduced in the future.

VI. CONCLUSIONS

This paper presents our work in neuromorphic computing and
acceleration. A brain-inspired information processing framework is
developed that performs document image recognition using pattern
matching and statistical information association. The framework
has outstanding noise resistance and is capable of recognizing
words and sentences from highly damaged images at high
accuracy. The detailed structure of a memristor crossbar array
based neuromoprhic accelerator is described. When applied to
implement the pattern matching layer of the text recognition
system, the NCA provides more than 8,000X speedups over the
Intel Xeon processor. The area and power consumption of the NCA
is only 1/3 and 0.5% of a Xeon processor respectively.
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